Formyl peptide receptor (FPR) mediates a number of important host defense functions. Although studies have been performed on the ligand binding site of FPR, FPR dynamic behavior such as receptor dimerization on the cell surface remains unknown. Recently, peptides derived from the transmembrane (TM) domains of GPCRs were shown to disrupt dimer formation by receptors and to result in specific regulation of receptor function. To reveal the function of FPR TM domains, hFPRTM peptides derived from FPR were synthesized, and their biological activities were evaluated with human neutrophils. Synthetic peptides did not exhibit agonistic or antagonistic activity toward superoxide anion production. However, Neutrophils treated with hFPRTM4 produced 4-fold superoxide anion compared with untreated cells when stimulated with FPR agonist fMLP. Short peptide fragments derived from the fourth TM region of FPR did not enhance superoxide anion production, which suggests that hFPRTM4 did not behave as a ligand. CD and fluorescence spectra suggested that hFPRTM peptides were inserted into the membrane. The addition of hFPRTM4 increased the intracellular calcium concentration, which meant the peptide activated some membrane protein on the cell surface. The present study suggests that the fourth TM domain of FPR has a function related to a priming effect.
Formylpeptide receptors are well-characterized receptors which participate in host defense responses of neutrophils. We designed and synthesized chemotactic peptide analog with p-benzoylphenylalanine (Bpa) and biotin to probe structural and mechanistic aspects of peptide-receptor interaction. These peptides possess biological activities which were dependent upon spacer residue length of and Bpa position. The covalent photoaffinity label was detected by Streptavidine-blot, which was inhibited by the parent peptide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.