Sterol regulatory element-binding protein 2 (SREBP-2) transcription factor has been identified as a key protein in cholesterol metabolism through the transactivation of the LDL receptor and cholesterol biosynthesis genes. Here, we generated mice lacking microRNA (miR)-33, encoded by an intron of the Srebp2, and showed that miR-33 repressed the expression of ATP-binding cassette transporter A1 (ABCA1) protein, a key regulator of HDL synthesis by mediating cholesterol efflux from cells to apolipoprotein A (apoA)-I. In fact, peritoneal macrophages derived from miR-33-deficient mice showed a marked increase in ABCA1 levels and higher apoA-I-dependent cholesterol efflux than those from WT mice. ABCA1 protein levels in liver were also higher in miR-33-deficient mice than in WT mice. Moreover, miR-33-deficient mice had significantly higher serum HDL cholesterol levels than WT mice. These data establish a critical role for miR-33 in the regulation of ABCA1 expression and HDL biogenesis in vivo.A TP-binding cassette transporter A1 (ABCA1), a 254-kDa cytoplasmic membrane protein, is a pivotal regulator of lipid efflux from cells to apolipoproteins (1). ABCA1 mediates the ratecontrolling step in HDL particle formation and plays an important role in reverse cholesterol transfer (2, 3). Mutations in the ABCA1 gene cause Tangier disease, which is characterized by the near absence of plasma HDL cholesterol associated with storage of cholesterol esters in reticuloendothelial tissues (4-7). Abca1 mRNA and protein are very unstable, with a half life of 1-2 h in murine macrophages (8), which indicates that new transcription and translation are major factors in ensuring constant and inducible ABCA1 expression.Sterol regulatory element-binding proteins (SREBPs), including SREBP-1a, -1c, and -2, modulate the transcription of a number of genes involved in the synthesis and receptor-mediated uptake of cholesterol and fatty acids (9-11). In sterol-depleted cells, SREBPs are cleaved by proteases in the Golgi, releasing the N-termini, which translocate into the nucleus and bind to SREs in the enhancers of multiple genes encoding enzymes and proteins involved in cholesterol biosynthesis and lipid uptake (11-13). Results to date support the notion that SREBP-1 primarily activates the fatty acid triglyceride and phospholipid pathways, whereas SREBP-2 is the prominent isoform for cholesterol synthesis and uptake (9,10,12).MicroRNAs (miRs) are small, non-protein-coding RNAs that base pair with specific mRNAs and inhibit translation or promote mRNA degradation. Recent reports have indicated that miR-33 controls cholesterol homeostasis based on knockdown experiments using antisense technology (14-16). Antisense inhibition of miRNA function has been an important tool for elucidating miRNA biology. However, to determine the potential developmental function of specific miRNAs and to perform longer-term studies, it is necessary to generate mice lacking each miRNA. We generated miR-33-deficient mice, which were born at the expected Mendelian ratio, a...
The LTBPs (or latent transforming growth factor β binding proteins) are important components of the extracellular matrix (ECM) that interact with fibrillin microfibrils and have a number of different roles in microfibril biology. There are four LTBPs isoforms in the human genome (LTBP-1, -2, -3, and -4), all of which appear to associate with fibrillin and the biology of each isoform is reviewed here. The LTBPs were first identified as forming latent complexes with TGFβ by covalently binding the TGFβ propeptide (LAP) via disulfide bonds in the endoplasmic reticulum. LAP in turn is cleaved from the mature TGFβ precursor in the trans golgi network but LAP and TGFβ remain strongly bound through non-covalent interactions. LAP, TGFβ, and LTBP together form the large latent complex (LLC). LTBPs were originally thought to primarily play a role in maintaining TGFβ latency and targeting the latent growth factor to the extracellular matrix (ECM), but it has also been shown that LTBP-1 participates in TGFβ activation by integrins and may also regulate activation by proteases and other factors. LTBP-3 appears to have a role in skeletal formation including tooth development. As well as having important functions in TGFβ regulation, TGFβ-independent activities have recently been identified for LTBP-2 and LTBP-4 in stabilizing microfibril bundles and regulating elastic fiber assembly.
Elastic fibers provide tissues with elasticity which is critical to the function of arteries, lungs, skin, and other dynamic organs. Loss of elasticity is a major contributing factor in aging and diseases. However, the mechanism of elastic fiber development and assembly is poorly understood. Here, we show that lack of fibulin-4, an extracellular matrix molecule, abolishes elastogenesis. fibulin-4 ؊/؊ mice generated by gene targeting exhibited severe lung and vascular defects including emphysema, artery tortuosity, irregularity, aneurysm, rupture, and resulting hemorrhages. All the homozygous mice died perinatally. The earliest abnormality noted was a uniformly narrowing of the descending aorta in fibulin-4 ؊/؊ embryos at embryonic day 12.5 (E12.5). Aorta tortuosity and irregularity became noticeable at E15.5. Histological analysis demonstrated that fibulin-4 ؊/؊ mice do not develop intact elastic fibers but contain irregular elastin aggregates. Electron microscopy revealed that the elastin aggregates are highly unusual in that they contain evenly distributed rod-like filaments, in contrast to the amorphous appearance of normal elastic fibers. Desmosine analysis indicated that elastin cross-links in fibulin-4 ؊/؊ tissues were largely diminished. However, expression of tropoelastin or lysyl oxidase mRNA was unaffected in fibulin-4 ؊/؊ mice. In addition, fibulin-4 strongly interacts with tropoelastin and colocalizes with elastic fibers in culture. These results demonstrate that fibulin-4 plays an irreplaceable role in elastogenesis.Elastic fibers with morphologically distinct architectures are present in the extracellular matrix (ECM) to accommodate elastic requirements and mechanical stresses imposed on different tissues. They are particularly abundant in elastic tissues such as large blood vessels, lung, and skin. Loss of elasticity is a major contributing factor in aging and a myriad of pathological conditions including emphysema, artery diseases, and cutis laxa (39,41,44). Elastic fibers undergo irreversible structural and compositional changes with age and in some pathological conditions (41). Regardless of morphology, all elastic fibers consist of cross-linked elastin, fibrillin-rich microfibrils, and several associated molecules (23,37,38,46). Elastin endows the fiber with the characteristic property of elastic recoil. It is chemically inert, extremely hydrophobic, and insoluble under most conditions. Monomeric elastin, called tropoelastin, is secreted from the cell as a soluble protein. Isolated and purified tropoelastin has been shown to exhibit a great tendency to aggregate (coacervation) in physiological solution and at temperatures in the physiological range, giving rise to supramolecular structures very similar to those found in natural elastic fibers (4,5,11). This self-aggregation property of tropoelastin is thought to contribute to elastic fiber assembly in vivo. However, self-aggregation alone is insufficient to explain the efficiency of the assembly process and the variable form of elastic fibers ...
The cytokine transforming growth factor-beta (TGF-β) has multiple effects in both physiological and pathological conditions. TGF-β is secreted as part of a tripartite complex from which it must be released in order to bind to its receptor. Sequestration of latent TGF-β in the extracellular matrix (ECM) is crucial for proper mobilization of the latent cytokine and its activation. However, contrary to expectation, loss-of-function mutations in genes encoding certain matrix proteins that bind TGF-β yield elevated, rather than decreased, TGF-β levels, posing a 'TGF-β paradox.' In this review, we discuss recent findings concerning the relationship of TGF-β, ECM molecules, and latent TGF-β activation and propose a model to resolve the 'TGF-β paradox.'
BackgroundCholesterol efflux from cells to apolipoprotein A-I (apoA-I) acceptors via the ATP-binding cassette transporters ABCA1 and ABCG1 is thought to be central in the antiatherogenic mechanism. MicroRNA (miR)-33 is known to target ABCA1 and ABCG1 in vivo.Methods and ResultsWe assessed the impact of the genetic loss of miR-33 in a mouse model of atherosclerosis. MiR-33 and apoE double-knockout mice (miR-33−/−Apoe−/−) showed an increase in circulating HDL-C levels with enhanced cholesterol efflux capacity compared with miR-33+/+Apoe−/− mice. Peritoneal macrophages from miR-33−/−Apoe−/− mice showed enhanced cholesterol efflux to apoA-I and HDL-C compared with miR-33+/+Apoe−/− macrophages. Consistent with these results, miR-33−/−Apoe−/− mice showed reductions in plaque size and lipid content. To elucidate the roles of miR-33 in blood cells, bone marrow transplantation was performed in these mice. Mice transplanted with miR-33−/−Apoe−/− bone marrow showed a significant reduction in lipid content in atherosclerotic plaque compared with mice transplanted with miR-33+/+Apoe−/− bone marrow, without an elevation of HDL-C. Some of the validated targets of miR-33 such as RIP140 (NRIP1) and CROT were upregulated in miR-33−/−Apoe−/− mice compared with miR-33+/+Apoe−/− mice, whereas CPT1a and AMPKα were not.ConclusionsThese data demonstrate that miR-33 deficiency serves to raise HDL-C, increase cholesterol efflux from macrophages via ABCA1 and ABCG1, and prevent the progression of atherosclerosis. Many genes are altered in miR-33-deficient mice, and detailed experiments are required to establish miR-33 targeting therapy in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.