Lath martensite is the dominant microstructural feature in quenched low-carbon Fe-C alloys. Its formation mechanism is not clear, despite extensive research. The microstructure of an Fe-0.05 C (wt.%) alloy water-quenched at various austenitizing temperatures has been investigated using transmission electron microscopy and a novel lath formation mechanism has been proposed. Body-centered cubic {112}〈111〉-type twin can be retained inside laths in the samples quenched at temperatures from 1050 °C to 1200 °C. The formation mechanism of laths with a twin substructure has been explained based on the twin structure as an initial product of martensitic transformation. A detailed detwinning mechanism in the auto-tempering process has also been discussed, because auto-tempering is inevitable during the quenching of low-carbon Fe-C alloys. The driving force for the detwinning is the instability of ω-Fe(C) particles, which are located only at the twinning boundary region. The twin boundary can move through the ω ↔ bcc transition in which the ω phase region represents the twin boundary.
Using a medium-carbon steel containing 2 mass% Si, we investigated the effect of its tempered martensite microstructure on its mechanical properties. We found that the tensile strength of tempered martensite continuously decreases with increasing tempering temperature and that its yield strength markedly decreases in a tempering temperature range of 673 K to 723 K. To investigate the correlation with the microstructure, we examined the effect of tempering temperature on the microstructure by SEM and TEM and identified Fe carbide phases by TEM nanobeam diffraction pattern analysis and X-ray diffractometry. In the tempering temperature range where the yield strength significantly decreases, the morphology of the ε carbide precipitated in martensite blocks changed from platelike to granular and the χ carbide was precipitated in a small amount in the samples tempered at 723 K. SAXS quantitative evaluation of the ε carbide revealed that the decrease in the size and volume fraction of the ε carbide with the increase in the tempering temperature was far greater than with the samples tempered at 673 K and below. The sharp decrease in the yield strength was suggested to be correlated with the increase in the mobility of dislocations with the decrease in the precipitate volume fraction resulting from the dissolution of ε carbide in the transformation process of the Fe carbides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.