A target of rapamycin (TOR) protein is a protein kinase that exerts cellular signal transduction to regulate cell growth in response to extracellular nutrient conditions. In the Schizosaccharomyces pombe genome database, there are two genes encoding TOR-related proteins, but their functions have not been analyzed. Here we report that one of the genes, referred to as tor1+, is required for sexual development induced by nitrogen starvation. Ste11 is a key transcription factor for the initiation of sexual development. The expression of ste11+ is normally regulated in tor1- cells; and overexpression of ste11+ hardly rescues the defect in fertility in tor1-. Upon nitrogen starvation, tor1+ cells promote two rounds of the cell cycle to become arrested at the G1 phase before initiation of sexual development. The tor1- cells do not promote such a cell cycle, suggesting that Tor1 is necessary for the response to nitrogen starvation. The tor1- cells show no growth or very slow growth under various stress conditions, including external high pH, high concentrations of salts or sorbitol, and high temperature. These results suggest that Tor1 is necessary for any response to a wide range of stresses. The vegetative growth of tor1- cells is inhibited by rapamycin, although tor1+ cells are resistant to the drug. The tor1- cells are hypersensitive to fluphenazine and cyclosporin A, which specifically inhibit calmodulin and calcineurin, respectively.
Fecal bacteria in Hokkaido native horses were enumerated by their morphology and Gram staining, and then three major cellulolytic species were quantitated by recently developed competitive polymerase chain reaction (cPCR) assays. Fecal bacterial flora in horses showed drastic change between grazing on summer grassland pasture and grazing on winter woodland pasture mainly consisting of bamboo grass (Sasa nipponica). The number of total bacteria was decreased in winter samples, accompanied with a higher proportion of Gram negative rods and lower proportions of Gram negative cocci, Gram positive rods and cocci than those in summer. This high proportion of Gram negative rods was partly explained by the high cPCR-assay values for Fibrobacter succinogenes (a highly cellulolytic Gram negative rod) in winter samples. Of three major cellulolytic bacterial species, F. succinogenes was dominant in feces of
When exposed to sublethal high temperatures, budding yeast cells can survive for a period of time; however, a sufficient amount of ubiquitin is necessary for this survival. To understand the nature of the stress, we examined the morphological changes in yeast cells, focusing on the vacuoles. Changes in vacuolar morphology were notable, and ruffled vacuolar membranes, accelerated invaginations of vacuolar membranes, and vesicle-like formations were observed. These changes occurred in the absence of Atg1, Atg9 or Ivy1 but appeared to require endosomal sorting proteins, such as Vps23, Vps24 or Pep12. Furthermore, the serial sections of the vacuoles analysed using an electron microscopic analysis revealed that spherical invaginated structures were linked together in a vacuole. Because degradation of cell surface proteins is induced from heat stress, fusion of endosomal and vacuolar membranes might occur frequently in heat-stressed cells, and yeast cells might be able to cope with a rapid increase in vacuolar surface area by such invaginations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.