Transcatheter arterial chemoembolization (TACE) is performed worldwide for patients with intermediate-stage hepatocellular carcinoma (HCC). TACE has produced survival advantages in two randomized controlled trials and a meta-analysis, and is currently the mainstay of treatment for this stage of HCC. However, there are currently no global guidelines regarding the dose, choice or combination of cytotoxic agents for TACE; therefore, it is difficult to compare data from different TACE studies. In Japan, most of the TACE procedures have been based on iodized oil as conventional TACE, utilizing the microembolic and drug-carrying characteristic of iodized oil. Superselective TACE with lipiodol is the primary TACE procedure that has reported satisfactory levels of local control associated with a lower risk of complications. Conversely, TACE performed using drug-eluting beads has been widely used in western countries, and this has shown similar tumor response and median survival compared to conventional TACE. Moreover, the combination of TACE and molecular targeted agents is now ongoing to evaluate the synergistic effect. In this review, the indication, technical issues, and complications of TACE are reviewed.
Most liver tumors are benign and hypervascular, and it is important to avoid unnecessary interventions for benign lesions. This review describes the typical and atypical imaging features of common hypervascular benign liver tumors and outlines a general approach to distinguishing between benign and malignant hepatic lesions. There are many types of benign liver tumors that need to be differentiated from hepatocellular carcinoma (HCC). Therefore, it is very important to know the imaging characteristics of benign tumors. Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging is helpful in diagnosing hypervascular pseudotumors, focal nodular hyperplasia, and nodular lesions associated with alcohol-induced hepatitis. There are also some hypervascular malignant tumors, such as cholangiocarcinoma, cholangiolocellular carcinoma, mixed type tumors, and metastatic liver tumors, which also required differentiation from HCC.
Although programmed cell death protein 1 (PD−1)/PD-ligand 1 (PD-L1) blockade is effective in a subset of patients with hepatocellular carcinoma (HCC), its therapeutic response is still unsatisfactory. Alternatively, the potential impact of the lenvatinib in patients who showed tumor progression on PD−1/PD-L1 blockade is unknown. In this work, we evaluated the safety and efficacy of lenvatinib administration after PD-1/PD-L1 checkpoint blockade. The outcome and safety of lenvatinib administered after PD-1/PD-L1 blockade failure was analyzed retrospectively in 36 patients. Tumor growth was assessed every 4–8 weeks using modified Response Evaluation Criteria in Solid Tumors. The mean relative dose intensity of lenvatinib was 87.6% and 77.8% in patients receiving a starting dose of 8 (interquartile range (IQR), 77.5–100.0) mg and 12 (IQR, 64.4–100.0) mg, respectively. Since lenvatinib therapy initiation, the median progression-free survival was 10 months (95% confidence interval (CI): 8.3–11.8) and the median overall survival was 15.8 months (95% CI: 8.5–23.2). The objective response rate was 55.6%, and the disease control rate was 86.1%. No particular safety concerns were observed. Lenvatinib demonstrated considerable antitumor effects with acceptable safety in patients with progressive and unresectable HCC when administered right after PD-1/PD-L1 blockade failure.
In this study, a single dose of gadobutrol was shown to be noninferior to a double dose of gadoteridol at detecting brain metastases, and could be effectively used for treatment planning in patients eligible for SRS. A dose of gadobutrol 0.1 mmol/kg BW is recommended as the clinical dose for the detection of brain metastases.
Background: This study aimed to evaluate and identify the specific CT findings by focusing on abnormalities in the main pancreatic duct (MPD) and pancreatic parenchyma in patients with small pancreatic cancer (PC) including carcinoma in situ (CIS). Methods: Nine CT findings indicating abnormalities of MPD and pancreatic parenchyma were selected as candidate findings for the presence of small PC ≤ 10 mm. The proportions of patients positive for each finding were compared between small PC and benign MPD stenosis groups. Interobserver agreement between two independent image reviewers was evaluated using kappa statistics. Results: The final analysis included 24 patients with small PC (including 11 CIS patients) and 28 patients with benign MPD stenosis. The proportion of patients exhibiting partial pancreatic parenchymal atrophy (PPA) corresponding to the distribution of MPD stenosis (45.8% vs. 7.1%, p < 0.01), upstream PPA arising from the site of MPD stenosis (33.3% vs. 3.6%, p = 0.01), and MPD abrupt stenosis (45.8% vs. 14.3%, p = 0.03) was significantly higher in the small PC group than in the benign MPD stenosis group. Conclusions: The presence of partial PPA, upstream PPA, and MPD abrupt stenosis on a CT image was highly suggestive of the presence of small PCs including CIS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.