Objective Fish oil (FO), and specifically omega 3 fatty acids, has favorable effects on cardiovascular outcomes. The aim of this study was to investigate the effects of FO on the process of macrophage reverse cholesterol transport (RCT) in an in vivo mouse model. Methods and Results C57BL/6J mice were fed a FO diet, whereas control mice were fed diets containing alternative sources of fats, soybean oil (SO), and coconut oil (CO) for 4 weeks. Macrophage RCT was assessed by injecting [3H]cholesterol-labeled J774 macrophages intraperitoneally into mice. After 48 hours, tissues were harvested and feces were collected. An increase in the excretion of macrophage-derived [3H]-tracer recovered in fecal neutral sterols for FO-fed mice was observed (273% versus SO and 182% versus CO). FO also decreased [3H]-tracer in hepatic cholesteryl ester compared to SO and CO by 76% and 56%, respectively. To specifically determine the effect of FO on the fate of HDL-derived cholesterol, mice fed FO or SO diets were injected with HDL labeled with [3H]cholesteryl oleate, and the disappearance of [3H]-tracer from blood and its excretion in feces was measured. There was no significant difference in the fractional catabolic rate of [3H]cholesteryl oleate-HDL between the 2 groups. However, there was a 242% increase in the excretion of HDL-derived [3H]-tracer recovered in fecal neutral sterols in FO-fed mice, concordant with significantly increased expression of hepatic Abcg5 and Abcg8 mRNA. Conclusion As measured by this tracer-based assay, FO promoted reverse cholesterol transport, primarily by enhancement of the hepatic excretion of macrophage-derived and HDL-derived cholesterol.
Several cellular signaling pathways, including insulin/IGF signaling, are known to be activated in hepatocellular carcinoma (HCC). Here, we investigated the roles of insulin receptor substrate (Irs) 1 and Irs2, both of which are the major molecules to be responsible for transducing insulin/IGF signaling in the liver, in the development of HCC by inducing chemical carcinogenesis using diethylnitrosamine (DEN) in mice. The Irs1 mRNA and protein expressions were upregulated in the tumors, along with enhanced insulin signaling. Liver-specific Irs1-knockout (LIrs1KO) mice exhibited suppression of DEN-induced HCC development, accompanied by reduced cancer cell proliferative activity and reduced activation of Akt. Gene expression analyses revealed that the tumors in the DEN-treated LIrs1KO mice showed modest metabolic alterations during hepatocarcinogenesis as well as decreased inflammation and invasion potentials. On the other hand, liver-specific Irs2-knockout (LIrs2KO) mice showed a similar pattern of HCC development to the DEN-treated control wild-type mice. Based on the knowledge that Wnt/β-catenin signaling is activated in HCC, we focused on Wnt/β-catenin signaling and demonstrated that Irs1 expression was induced by Wnt3a stimulation in the primary hepatocytes, associated with insulin-stimulated Akt activation. These data suggest that upregulated Irs1 by Wnt/β-catenin signaling plays a crucial role in the progression of HCC.
Aims/Introduction To prevent diabetic complications, strict glucose control and frequent monitoring of blood glucose levels with invasive methods are necessary. We considered the monitoring of tear glucose levels might be a possible method for non‐invasive glucose monitoring. To develop tear glucose monitoring for clinical application, we investigated the precise correlation between the blood and tear glucose concentrations. Materials and Methods A total of 10 participants and 20 participants with diabetes were admitted, and blood and tear samples were collected. Before statistical analysis, we eliminated tear samples contaminated with blood. We observed the daily blood and tear glucose dynamics, and carried out a random intercept model analysis to examine the association between the blood and tear glucose concentrations. Results Tear occult blood tests showed that the tear glucose concentrations and their variation increased in both participants with and without diabetes as contamination of blood increased. In both participants with and without diabetes, fluctuations of the plasma glucose concentrations were observed depending on the timing of collection of the samples, and the dynamics of the tear glucose concentrations paralleled those of the plasma glucose concentrations. The random intercept model analysis showed a significant association between the plasma and tear glucose concentrations in participants with diabetes (P < 0.001). This association still existed even after adjusting for the glycated hemoglobin levels and the prandial state (P < 0.001). Conclusions It is important to eliminate the tear samples contaminated with blood. Tear glucose monitoring might be a reliable and non‐invasive substitute method for monitoring the blood glucose concentrations for diabetes patients, irrespective of glycated hemoglobin levels and timing of sample collection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.