Recent use of the CRISPR/Cas9 system has dramatically reduced the time required to produce mutant mice, but the involvement of a time-consuming microinjection step still hampers its application for high-throughput genetic analysis. Here we developed a simple, highly efficient, and large-scale genome editing method, in which the RNAs for the CRISPR/Cas9 system are electroporated into zygotes rather than microinjected. We used this method to perform single-stranded oligodeoxynucleotide (ssODN)-mediated knock-in in mouse embryos. This method facilitates large-scale genetic analysis in the mouse.
Rotational movement of the node cilia generates a leftward fluid flow in the mouse embryo because the cilia are posteriorly tilted. However, it is not known how anterior-posterior information is translated into the posterior tilt of the node cilia. Here, we show that the basal body of node cilia is initially positioned centrally but then gradually shifts toward the posterior side of the node cells. Positioning of the basal body and unidirectional flow were found to be impaired in compound mutant mice lacking Dvl genes. Whereas the basal body was normally positioned in the node cells of Wnt3a(-/-) embryos, inhibition of Rac1, a component of the noncanonical Wnt signalling pathway, impaired the polarized localization of the basal body in wild-type embryos. Dvl2 and Dvl3 proteins were found to be localized to the apical side of the node cells, and their location was polarized to the posterior side of the cells before the posterior positioning of the basal body. These results suggest that posterior positioning of the basal body, which provides the posterior tilt to node cilia, is determined by planar polarization mediated by noncanonical Wnt signalling.
The CRISPR/Cas9 system is a powerful tool for elucidating the roles of genes in a wide variety of organisms including mice. To obtain genetically modified embryos or mice by this method, Cas9 mRNA and sgRNA are usually introduced into zygotes by microinjection or electroporation. However, most mutants generated with this method are genetically mosaic, composed of several types of cells carrying different mutations, which complicates phenotype analysis in founder embryos or mice. To simplify the analysis and to elucidate the roles of genes involved in developmental processes, a method for producing non-mosaic mutants is needed. Here, we established a method for generating non-mosaic mouse mutant embryos. We introduced Cas9 protein and sgRNA into in vitro fertilized (IVF) zygotes by electroporation, which enabled the genome editing to occur before the first replication of the mouse genome. As a result, all of the cells in the mutant carried the same set of mutations. This method solves the problem of mosaicism/allele complexity in founder mutant embryos or mice generated by the CRIPSR/Cas9 system.
Polarization of node cells along the anterior-posterior axis of mouse embryos is responsible for left-right symmetry breaking. How node cells become polarized has remained unknown, however. Wnt5a and Wnt5b are expressed posteriorly relative to the node, whereas genes for Sfrp inhibitors of Wnt signaling are expressed anteriorly. Here we show that polarization of node cells is impaired in Wnt5aWnt5b and Sfrp mutant embryos, and also in the presence of a uniform distribution of Wnt5a or Sfrp1, suggesting that Wnt5 and Sfrp proteins act as instructive signals in this process. The absence of planar cell polarity (PCP) core proteins Prickle1 and Prickle2 in individual cells or local forced expression of Wnt5a perturbed polarization of neighboring wild-type cells. Our results suggest that opposing gradients of Wnt5a and Wnt5b and of their Sfrp inhibitors, together with intercellular signaling via PCP proteins, polarize node cells along the anterior-posterior axis for breaking of left-right symmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.