It is crucial for proper insulation design of cast resin transformer to consider voids and delamination which might exist in cast molding because of several surface boundaries between resin and conductor. Such defects in the insulator lead to reduction of the life of the apparatus. In this report, we investigate the relation between the void size and apparent charge of partial discharge (PD) occurring in a model simulating the insulation system of cast resin transformer. It is also important to determine necessary PD detection sensitivity of PD test in a factory as well as in a field. In this paper, we also discuss the detection sensitivity by considering the relation between charge and void radius using formula derived by L. Niemyer, M. Pedersen and their colleagues in the late 1980's to apply to the case of the cast resin transformer. Experiments were also performed to obtain PD inception voltage (PDIV) of epoxy resin slab including an artificial void with a given size. Investigation was also made on the effect of X-ray irradiation to the epoxy resin on PDIV characteristics.
It is crucial for proper insulation design of cast resin transformer to consider voids and delamination which might exist in cast molding process and/or under long-term operation because of several surface boundaries between resin and conductor. Should such defects in the insulation system exist, it would lead to reduction of the life of the apparatus. In this report, we investigate the relation between the void size and apparent charge of partial discharge (PD) occurring in a model simulating the insulation system of cast resin transformer. It is also important to determine necessary PD detection sensitivity of PD test in a factory as well as in a field. In addition, we investigate X-ray irradiation induced discharge of spherical void in epoxy resin. Physical consideration of the effect of X-ray irradiation on void discharges in epoxy resin was also made. Time lag of void discharges in epoxy resin was also made with attenuation of X-ray irradiation dose considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.