Macroautophagy (autophagy) is a highly conserved intracellular degradation system that is essential for homeostasis in eukaryotic cells. Due to the wide variety of the cytoplasmic targets of autophagy, its dysregulation is associated with many diseases in humans, such as neurodegenerative diseases, heart disease and cancer. During autophagy, cytoplasmic materials are sequestered by the autophagosome -a double-membraned structure -and transported to the lysosome for digestion. The specific stages of autophagy are induction, formation of the isolation membrane (phagophore), formation and maturation of the autophagosome and, finally, fusion with a late endosome or lysosome. Although there are significant insights into each of these steps, the mechanisms of autophagosomelysosome fusion are least understood, although there have been several recent advances. In this Commentary, we will summarize the current knowledge regarding autophagosome-lysosome fusion, focusing on mammals, and discuss the remaining questions and future directions of the field.
Germline stem cells continually produce sperm in vertebrate testes, whereas there is no direct evidence showing that germline stem cells are present in adult vertebrate ovaries. By using transgenic methods and clonal analysis, we identified germline stem cells that supported oogenesis and the production of offspring in the ovaries of adult medaka fish. Early-stage germ cells were localized in clusters along interwoven threadlike cords of sox9b-expressing somatic cells (termed germinal cradles) where the germ cells developed. Germline stem cells gave rise to germ cells that divided to produce cysts, which then underwent cell death or separated to form follicles. Our results provide insight into the germline stem cell biology of medaka and provide a model system for studying vertebrate stem cell niches.
Animal lifespan is regulated by conserved metabolic signalling pathways and specific transcription factors, but whether these pathways affect common downstream mechanisms remains largely elusive. Here we show that NCL-1/TRIM2/Brat tumour suppressor extends lifespan and limits nucleolar size in the major C. elegans longevity pathways, as part of a convergent mechanism focused on the nucleolus. Long-lived animals representing distinct longevity pathways exhibit small nucleoli, and decreased expression of rRNA, ribosomal proteins, and the nucleolar protein fibrillarin, dependent on NCL-1. Knockdown of fibrillarin also reduces nucleolar size and extends lifespan. Among wildtype C. elegans, individual nucleolar size varies, but is highly predictive for longevity. Long-lived dietary restricted fruit flies and insulin-like-peptide mutants exhibit small nucleoli and fibrillarin expression, as do long-lived dietary restricted and IRS1 knockout mice. Furthermore, human muscle biopsies from individuals who underwent modest dietary restriction coupled with exercise also display small nucleoli. We suggest that small nucleoli are a cellular hallmark of longevity and metabolic health conserved across taxa.
To further elucidate the roles of germ cells in the sex differentiation of gonads, we have used the medaka, a teleost fish, to generate mutants that lack germ cells from the onset of gonadogenesis by the morpholino-mediated knockdown of cxcr4. The resulting germcell-deficient medaka show female-to-male sex reversal of their secondary sex characteristics, accompanied by increased levels of androgen and reduced levels of estrogen. A failure to maintain granulosa cells or estrogen-producing cells also occurs at early stages of sex differentiation in the cxcr4 morphants, before the initiation of gonadal morphogenesis. In contrast, androgenproducing cells are unaffected in germ-cell-deficient medaka of either sex. In addition, a single tube-like gonad that expresses male-specific genes is formed in these mutants irrespective of the genetic sex. Significantly, each of these mutant phenotypes occurs in a somatic cell-autonomous manner, suggesting that gonadal somatic cells are predisposed toward male development in the absence of germ cells. This highlights the importance of germ cells in the sexual dimorphism of the gonads.sex differentiation ͉ steroidogenic cells ͉ sox9 ͉ foxl2 ͉ aromatase
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.