The rate constants for the reactions of OH radicals with benzene and toluene have been measured directly by a shock tube/pulsed laser-induced fluorescence imaging method at high temperatures. The OH radicals were generated by the thermal decomposition of nitric acid or tert-butyl hydroperoxide. The derived Arrhenius expressions for the rate constants were k(OH + benzene) = 8.0 x 10(-11) exp(-26.6 kJ mol(-1)/RT) [908-1736 K] and k(OH + toluene) = 8.9 x 10(-11) exp(-19.7 kJ mol(-1)/RT) [919-1481 K] in the units of cubic centimeters per molecule per second. Transition-state theory (TST) calculations based on quantum chemically predicted energetics confirmed the dominance of the H-atom abstraction channel for OH + benzene and the methyl-H abstraction channel for OH + toluene in the experimental temperature range. The TST calculation indicated that the anharmonicity of the C-H-O bending vibrations of the transition states is essential to reproduce the observed rate constants. Possible implications to the other analogous H-transfer reactions were discussed.
The gas-phase laser-induced fluorescence (LIF) spectrum of a 1-phenylpropargyl radical has been identified in the region 20,800-22,000 cm(-1) in a free jet. The radical was produced from discharges of hydrocarbons including benzene. Disregarding C2, C3, and CH, this radical appears as the most strongly fluorescing product in a visible wavelength two-dimensional fluorescence excitation-emission spectrum of a jet-cooled benzene discharge. The structure of the carrier was elucidated by measurement of a matching resonant two-color two-photon ionization spectrum at m/z = 115 and density functional theory. The assignment was proven conclusively by observation of the same excitation spectrum from a low-current discharge of 3-phenyl-1-propyne. The apparent great abundance of the 1-phenylpropargyl radical in discharges of benzene and, more importantly, 1-hexyne may further underpin the proposed importance of the propargyl radical in the formation of complex hydrocarbons in combustion and circumstellar environments.
An alkyl-substituted Criegee intermediate syn-CH3CHOO was detected in the gas phase through Fourier-transform microwave spectroscopy. Observed pure rotational transitions show a small splitting corresponding to the A∕E components due to the threefold methyl internal rotation. The rotational constants and the barrier height of the hindered methyl rotation were determined to be A = 17 586.5295(15) MHz, B = 7133.4799(41) MHz, C = 5229.1704(40) MHz, and V3 = 837.1(17) cm(-1). High-level ab initio calculations which reproduce the experimentally determined values well indicate that the in-plane C-H bond in the methyl moiety is trans to the C-O bond, and other two protons are directed to the terminal oxygen atom for the most stable structure of syn-CH3CHOO. The torsional barrier of the methyl top is fairly large in syn-CH3CHOO, implying a significant interaction between the terminal oxygen and the protons of the methyl moiety, which may be responsible for the high production yields of the OH radical from energized alkyl-substituted Criegee intermediates.
Gout is a common arthritis caused by elevated serum uric acid (SUA) levels. Here we investigated loci influencing SUA in a genome-wide meta-analysis with 121,745 Japanese subjects. We identified 8948 variants at 36 genomic loci (
P
<5 × 10
–8
) including eight novel loci. Of these, missense variants of
SESN2
and
PNPLA3
were predicted to be damaging to the function of these proteins; another five loci—
TMEM18
,
TM4SF4
,
MXD3-LMAN2
,
PSORS1C1-PSORS1C2
, and
HNF4A
—are related to cell metabolism, proliferation, or oxidative stress; and the remaining locus,
LINC01578
, is unknown. We also identified 132 correlated genes whose expression levels are associated with SUA-increasing alleles. These genes are enriched for the UniProt transport term, suggesting the importance of transport-related genes in SUA regulation. Furthermore, trans-ethnic meta-analysis across our own meta-analysis and the Global Urate Genetics Consortium has revealed 15 more novel loci associated with SUA. Our findings provide insight into the pathogenesis, treatment, and prevention of hyperuricemia/gout.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.