Recent years have witnessed increasing demand for selective laser melting (SLM) in practical applications; however, determining the appropriate process parameter range remains challenging. In this study, a framework was developed to determine the appropriate process parameter range considering the occurrence of defects and cracks by conducting a single-track test and thermal elastoplastic analysis. Keyholing, balling, and the residual unmelted regions were considered defects. The occurrence of solidification cracking, which is predominant in the SLM of solution-strengthened Ni-based alloys, was considered. Using the proposed framework, we could fabricate a part with largely no defects or cracks, except for the edges, under the determined optimal process parameters.
Defects occur in laser powder bed fusion (L-PBF) such as the keyholing, lack of fusion, and the balling depending on the laser power (P) and the scan speed (V). The figure shows that the occupied regions of each defect are the process window and are essentially important to fabricate a high-quality part. This paper is a study of process window generation using single-track experiments and finite-element method simulation of thermal conduction for Inconel738LC alloy. A series of single-track experiments were conducted varying the range of P and V and the results were classified into keyholing, lack of fusion, balling, and good track. A series of simulations were conducted and validated by comparison with the experiments. To quantitively identify the balling, the isolines from the contour map generated by the results of simulations and the balling criteria of the ratio of melt pool length and the depth (L/D) of 7.69 were determined considering the past theoretical studies. The lack of fusion criteria: the ratio of the overlap depth in fabrication using multi-scan (Dov) and powder layer thickness (t) of 0.1 was obtained. Using the criteria obtained from the experiments and simulation, the process window was generated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.