The transcription factor, Sry-related High Mobility Group (HMG) box containing gene 9 (Sox9), plays a critical role in cartilage development by initiating chondrogenesis and preventing the subsequent maturation process called chondrocyte hypertrophy. This suppression mechanism by Sox9 on late-stage chondrogenesis partially results from the inhibition of Runt-related transcription factor 2 (Runx2), the main activator of hypertrophic chondrocyte differentiation. However, the precise mechanism by which Sox9 regulates late chondrogenesis is poorly understood.In the present study, the transcriptional repressor vertebrate homolog of Drosophila bagpipe (Bapx1) was found to be a direct target of Sox9 for repression of Runx2 expression in chondrocytes. We identified a critical Sox9 responsive region in the Bapx1 promoter via a luciferase reporter assay. Analysis by chromatin immunoprecipitation and electrophoretic mobility shift assays indicated that Sox9 physically bound to this region of the Bapx1 promoter. Consistent with the notion that Bapx1 and Sox9 act as negative regulators of chondrocyte hypertrophy by regulating Runx2 expression, transient knockdown of Sox9 or Bapx1 expression by shRNA in chondrocytes increased Runx2 expression, as well as expression of the late chondrogenesis marker, Col10a1. Furthermore, while over-expression of Sox9 decreased Runx2 and Col10a1 expressions, simultaneous transient knockdown of Bapx1 diminished that Sox9 over-expressing effect.Our findings reveal that the molecular pathway modulated by Bapx1 links two major regulators in chondrogenesis, Sox9 and Runx2, to coordinate skeletal formation.
To identify genes responsive to cold stress, we employed the differential display mRNA analysis technique to isolate a novel gene from Tetrahymena thermophila which encodes a protein kinase of 430 amino acids. A homolog of this kinase with 90% amino acid sequence identity was also found in T. pyriformis. Both kinases contain 11 subdomains typical of protein kinases. Sequence analysis revealed that the predicted amino acid sequences resemble those of mitogen-activated protein kinase (MAPK), especially p38 and stressactivated protein kinase which are known to be involved in various stress responses. However, it should be noted that the tyrosine residue in the normally conserved MAPK phosphorylation site (Thr-X-Tyr) is replaced by histidine (Thr 226 -Gly-His 228 ) in this MAPKrelated kinase (MRK). The recombinant MRK expressed in Escherichia coli phosphorylated myelin basic protein (MBP) and became autophosphorylated. However, the mutated recombinant protein in which Thr 226 was replaced by Ala lost the ability to phosphorylate MBP, suggesting that Thr 226 residue is essential for kinase activity. The MRK mRNA transcript in T. thermophila increased markedly upon temperature downshift from 35 to 15°C (0.8°C/min). Interestingly, osmotic shock either by sorbitol (100 -200 mM) or NaCl (25-100 mM) also induced mRNA expression of the MRK in T. pyriformis. In addition, the activity of the kinase as determined by an immune complex kinase assay using MBP as a substrate was also induced by osmotic stress. This is the first demonstration of a MAPK-related kinase in the unicellular eukaryotic protozoan Tetrahymena that is induced by physical stresses such as cold temperature and osmolarity. The present results suggest that this MRK may function in the stress-signaling pathway in Tetrahymena cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.