The Jahn–Teller effect, a phase transition phenomenon involving spontaneous breakdown of symmetry in molecules and crystals, causes important physical and chemical changes that impact various fields of science, from the natural photosystem II to superconductors. In this study, we discovered that localised surface plasmon resonance (LSPR) induced the cooperative Jahn–Teller effect in covellite CuS nanocrystals (NCs), causing metastable displacive ion movements. Although light–matter interaction of plasmonic metal NCs has been widely investigated, the scope has been limited to collective mode stimulation. Electron diffraction measurements under photo illumination, ultrafast time-resolved electron diffraction analyses, and theoretical calculations of semiconductive plasmonic CuS NCs showed that metastable displacive ion movements due to the LSPR-induced cooperative Jahn–Teller effect caused a delay in the relaxation of LSPR in the microsecond region. Furthermore, the displacive ion movements caused photo-switching of conductivity in CuS NCs films used in room temperature ranges such as in transparent variable resistance infrared sensors. This study pushes the limits of plasmonics from the increase in tentative collective oscillation to metastable crystal structure manipulation, thereby expanding on Faraday's discovery.
The Jahn–Teller effect, a phase transition phenomenon involving spontaneous breakdown of symmetry in molecules and crystals, causes important physical and chemical changes that impact various fields of science, from the natural photosystem II to superconductors. In this study, we discovered that localised surface plasmon resonance (LSPR) induced the cooperative Jahn–Teller effect in covellite CuS nanocrystals (NCs), causing metastable displacive ion movements. Although light–matter interaction of plasmonic metal NCs has been widely investigated, the scope has been limited to collective mode stimulation. Electron diffraction measurements under photo illumination, ultrafast time-resolved electron diffraction analyses, and theoretical calculations of semiconductive plasmonic CuS NCs showed that metastable displacive ion movements due to the LSPR-induced cooperative Jahn–Teller effect caused a delay in the relaxation of LSPR in the microsecond region. Furthermore, the displacive ion movements caused photo-switching of conductivity in CuS NCs films used in room temperature ranges such as in transparent variable resistance infrared sensors. This study pushes the limits of plasmonics from the increase in tentative collective oscillation to metastable crystal structure manipulation, thereby expanding on Faraday's discovery.
The Jahn–Teller effect, a phase transition phenomenon involving spontaneous breakdown of symmetry in molecules and crystals, causes important physical and chemical changes that impact various fields of science, from the natural photosystem II to superconductors. In this study, we discovered that localised surface plasmon resonance (LSPR) induced the cooperative Jahn–Teller effect in covellite CuS nanocrystals (NCs), causing metastable displacive ion movements. Although light–matter interaction of plasmonic metal NCs has been widely investigated, the scope has been limited to collective mode stimulation. Electron diffraction measurements under photo illumination, ultrafast time-resolved electron diffraction analyses, and theoretical calculations of semiconductive plasmonic CuS NCs showed that metastable displacive ion movements due to the LSPR-induced cooperative Jahn–Teller effect caused a delay in the relaxation of LSPR in the microsecond region. Furthermore, the displacive ion movements caused photo-switching of conductivity in CuS NCs films used in room temperature ranges such as in transparent variable resistance infrared sensors. This study pushes the limits of plasmonics from the increase in tentative collective oscillation to metastable crystal structure manipulation, thereby expanding on Faraday's discovery.
The Jahn–Teller effect, a phase transition phenomenon involving spontaneous breakdown of symmetry in molecules and crystals, causes important physical and chemical changes that impact various fields of science, from the natural photosystem II to superconductors. In this study, we discovered that localised surface plasmon resonance (LSPR) induced the cooperative Jahn–Teller effect in covellite CuS nanocrystals (NCs), causing metastable displacive ion movements. Although light–matter interaction of plasmonic metal NCs has been widely investigated, the scope has been limited to collective mode stimulation. Electron diffraction measurements under photo illumination, ultrafast time-resolved electron diffraction analyses, and theoretical calculations of semiconductive plasmonic CuS NCs showed that metastable displacive ion movements due to the LSPR-induced cooperative Jahn–Teller effect caused a delay in the relaxation of LSPR in the microsecond region. Furthermore, the displacive ion movements caused photo-switching of conductivity in CuS NCs films used in room temperature ranges such as in transparent variable resistance infrared sensors. This study pushes the limits of plasmonics from the increase in tentative collective oscillation to metastable crystal structure manipulation, thereby expanding on Faraday's discovery.
Multifunctional spin crossover (SCO) complexes provide control over electronic properties of anions. Here, we study a prototypical complex to understand ultrafast reaction pathways and transitional structures and open a way for fast responsive multi-level photoswitches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.