In most patients, the pulse method provides bedside measurement of BV without blood sampling (except for hemoglobin determination), with an estimated error less than 10%. In 10-30% of tests the method failed because of motion distortion of the record during the 10-min data collection period or because of insufficient pulse amplitude in the test tissue.
BackgroundViral infection is one of the risk factors for asthma exacerbation. However, which pathogens are related to asthma exacerbation in adults remains unclear.ObjectiveThe relation between various infections and adult asthma exacerbations was investigated in clinical practice.MethodsThe study subjects included 50 adult inpatients due to asthma exacerbations and 20 stable outpatients for comparison. The pathogens from a nasopharyngeal swab were measured by multiplex PCR analysis.ResultsAsthma exacerbations occurred after a common cold in 48 inpatients. The numbers of patients with viral, bacterial, or both infections were 16, 9, and 9, respectively. The dominant viruses were rhinoviruses, respiratory syncytial virus, influenza virus, and metapneumovirus. The major bacteria were S. pneumoniae and H. influenzae. Compared to pathogen-free patients, the patients with pathogens were older and non-atopic and had later onset of disease, lower FeNO levels, lower IgE titers, and a higher incidence of comorbid sinusitis, COPD, or pneumonia. Compared to stable outpatients, asthma exacerbation inpatients had a higher incidence of smoking and comorbid sinusitis, COPD, or pneumonia. Viruses were detected in 50% of stable outpatients, but a higher incidence of rhinovirus, respiratory syncytial virus, and metapneumovirus infections was observed in asthma exacerbation inpatients. H. influenzae was observed in stable asthmatic patients. Other bacteria, especially S. pneumoniae, were important in asthma exacerbation inpatients.ConclusionViral or bacterial infections were observed in 70% of inpatients with an asthma exacerbation in clinical practice. Infection with S. pneumoniae was related to adult asthma exacerbation.
Caldesmon, which plays a vital role in the actomyosin system, is distributed in smooth muscle and non-muscle cells, and its isoformal interconversion between a high M r form and low M r form is a favorable molecular event for studying phenotypic modulation of smooth muscle cells. Genomic analysis reveals two promoters, of which the gizzard-type promoter displays much higher activity than the brain-type promoter. Here, we have characterized transcriptional regulation of the gizzard-type promoter. Transient transfection assays in chick gizzard smooth muscle cells, chick embryo fibroblasts, mouse skeletal muscle cell line (C2C12), and HeLa cells revealed that the promoter activity was high in smooth muscle cells and fibroblasts, but was extremely low in other cells. Cell type-specific promoter activity depended on an element, CArG1, containing a unique CArG box-like motif (CCAAAAAAGG) at ؊315, while multiple E boxes were not directly involved in this event. Gel shift assays showed the specific interaction between the CArG1 and nuclear protein factors in smooth muscle cells and fibroblasts. These results suggest that the CArG1 is an essential cis-element for cell type-specific expression of caldesmon and that the function of CArG1 might be controlled under phenotypic modulation of smooth muscle cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.