ObjectivesGenetic Creutzfeldt-Jakob disease (CJD) due to V180I mutation in the prion protein gene (PRNP) is of great interest because of the differences from sporadic CJD and other genetic prion diseases in terms of clinical features, as well as pathological and biochemical findings. However, few systematic observations about the clinical features in patients with this unique mutation have been published. Therefore, the goal of this study was to relate this mutation to other forms of CJD from a clinical perspective.DesignWe analysed clinical symptoms, prion protein genetics, biomarkers in cerebrospinal fluid (CSF) and MRI of patients.Participants186 Japanese patients with the V180I mutation in PRNP.ResultsOur results indicate that the V180I mutation caused CJD at an older age, with a slower progression and a lower possibility of developing myoclonus, cerebellar, pyramidal signs and visual disturbance compared with classical sporadic CJD with methionine homozygosity at codon 129 of PRNP. Cognitive impairment was the major symptom. Diffuse hyperintensity of the cerebral cortex in diffusion-weighted MRI might be helpful for diagnosis. Owing to the low positivity of PrPSc in the CSF, genetic analysis was often required for a differential diagnosis from slowly progressive dementia.ConclusionsWe conclude that the V180I mutation in PRNP produces a late-developing and slow-developing, less severe form of CJD, whose lesions are uniquely distributed compared with sporadic and other genetic forms of CJD.
Prion protein gene (PRNP) E219K is a human polymorphism commonly occurring in Asian populations but is rarely found in patients with sporadic Creutzfeldt-Jakob disease (CJD). Thus the polymorphism E219K has been considered protective against sporadic CJD. The corresponding mouse prion protein (PrP) polymorphism variant (mouse PrP 218K) is not converted to the abnormal isoform (PrP Sc ) and shows a dominant negative effect on wild-type PrP conversion. To define the conversion activity of this human molecule, we herein established knock-in mice with human PrP 219K and performed a series of transmission experiments with human prions. Surprisingly, the human PrP 219K molecule was converted to PrP Sc in variant CJD infection, and the conversion occurred more efficiently than PrP 219E molecule. Notably the knock-in mice with PRNP codon 219E/K showed the least efficient conversion compared with their hemizygotes with PRNP codon 219E/0 or codon 219K/0, or homozygotes with PRNP codon 219E/E or codon 219K/K. This phenomenon indicated heterozygous inhibition. This heterozygous inhibition was observed also in knock-in mice with PRNP codon 129M/V genotype. In addition to variant CJD infection, the human PrP 219K molecule is conversion-competent in transmission experiments with sporadic CJD prions. Therefore, the protective effect of PRNP E219K against sporadic CJD might be due to heterozygous inhibition.
The structural details of the essential entity of prion disease, fibril prion protein (PrP(Sc)), are still elusive despite the large body of evidence supporting the prion hypothesis. Five major working models of PrP(Sc) structure, which are not compatible with each other, have been proposed. However, no systematic evaluation has been performed on those models. We devised a method that combined systematic point mutation with threading on knowledge-based amino acid potentials. A comprehensive mutation experiment was performed on mouse prion protein, and the PrP(Sc) conversion efficiency of each mutant was examined. The models were evaluated based on the mutation data by using the threading method. Although the data turned out to be rather more consistent with the models that assumed a conversion of the N-terminal region of core PrP into a β helix than with others, substantial modifications were also required to further improve the current model based on recent experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.