Vascular plants appeared ~410 million years ago then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes (1). We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first non-seed vascular plant genome reported. By comparing gene content in evolutionary diverse taxa, we found that the transition from a gametophyte- to sporophyte-dominated life cycle required far fewer new genes than the transition from a non-seed vascular to a flowering plant, while secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in post-transcriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the tasiRNA pathway and extensive RNA editing of organellar genes.
Far-red light regulates many aspects of seedling development, such as inhibition of hypocotyl elongation and the promotion of greening, acting in part through phytochrome A (phyA). The RING motif protein COP1 is also important because cop1 mutants exhibit constitutive photomorphogenesis in darkness. COP1 is present in the nucleus in darkness but is gradually relocated to the cytoplasm upon illumination. Here we show that COP1 functions as an E3 ligase ubiquitinating both itself and the myb transcription activator LAF1, which is required for complete phyA responses. In transgenic plants, inducible COP1 overexpression leads to a decrease in LAF1 concentrations, but is blocked by the proteasome inhibitor MG132. The coiled-coil domain of SPA1, a negative regulator of phyA signalling, has no effect on COP1 auto-ubiquitination but facilitates LAF1 ubiquitination at low COP1 concentrations. These results indicate that, in darkness, COP1 functions as a repressor of photomorphogenesis by promoting the ubiquitin-mediated proteolysis of a subset of positive regulators, including LAF1. After the activation of phyA, SPA1 stimulates the E3 activity of residual nuclear COP1 to ubiquitinate LAF1, thereby desensitizing phyA signals.
Regenerative medicine is based on stem cells, signals, and scaffolds. Dental pulp tissue has the potential to regenerate dentin in response to noxious stimuli, such as caries. The progenitor/stem cells are responsible for this regeneration. Thus, stem cell therapy has considerable promise in dentin regeneration. Culture of porcine pulp cells, as a three-dimensional pellet, promoted odontoblast differentiation compared with monolayers. The expression of dentin sialophosphoprotein (Dspp) and enamelysin/matrix metalloproteinase 20 (MMP20) mRNA confirmed the differentiation of pulp cells into odontoblasts and was stimulated by the morphogenetic signal, bone morphogenetic protein 2 (BMP2). Based on the in vitro experiments, an in vivo evaluation of pulp progenitor/stem cells in the dog was performed. The autogenous transplantation of the BMP2-treated pellet culture onto the amputated pulp stimulated reparative dentin formation. In conclusion, BMP2 can direct pulp progenitor/stem cell differentiation into odontoblasts and result in dentin formation.
The tobacco mitogen-activated protein kinase kinase kinase NPK1 regulates lateral expansion of the cell plate at cytokinesis. Here, we show that the kinesin-like proteins NACK1 and NACK2 act as activators of NPK1. Biochemical analysis suggests that direct binding of NACK1 to NPK1 stimulates kinase activity. NACK1 is accumulated specifically in M phase and colocalized with NPK1 at the phragmoplast equator. Overexpression of a truncated NACK1 protein that lacks the motor domain disrupts NPK1 concentration at the phragmoplast equator and cell plate formation. Incomplete cytokinesis is also observed when expression of NACK1 and NACK2 is repressed by virus-induced gene silencing and in embryonic cells from Arabidopsis mutants in which a NACK1 ortholog is disrupted. Thus, we conclude that expansion of the cell plate requires NACK1/2 to regulate the activity and localization of NPK1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.