The reaction of an isolable anionic aluminabenzene with electrophiles, such as MeOTf and Me 3 SiOTf, was investigated. The nucleophilic attack on the pentadienyl moiety of the aluminabenzene ring proceeded at the 4position to form the aluminacyclohexadiene bearing a Me or Me 3 Si group. Treatment of the resulting methyl-or silylsubstituted aluminacyclohexadiene with the bulky base MesLi gave the rearomatized anionic aluminabenzene bearing a Me or Me 3 Si group. Thus, this sequential reaction would be considered as an electrophilic substitution of aluminabenzene. The substituent effect of Me and Me 3 Si groups on the aluminabenzene ring was also estimated on the basis of experimental and theoretical studies.
Methyl 13(1)-(di)cyanomethylene-pyropheophorbides were synthesized by Knoevenagel reactions of the corresponding 13(1)-oxo-chlorins prepared from modifying chlorophyll-a with malononitrile or cyanoacetic acid. Alternatively, methyl 13(1)-cyanomethylene-pyropheophorbides were produced by Wittig reactions of 13(1)-oxo-chlorins with Ph3P=CHCN. Self-aggregation of zinc complexes of the semi-synthetic chlorophyll derivatives possessing a hydroxy or methoxy group at the 3(1)-position was examined in 1%(v/v) tetrahydrofuran or dichloromethane and hexane by electronic absorption and circular dichroism spectroscopy. Although intermolecular hydrogen-bonding between the 3(1)-hydroxy and 13(1)-oxo groups of bacteriochlorophylls-c/d/e/f was essential for their self-aggregation in natural light-harvesting antenna systems (=chlorosomes), zinc 3(1)-hydroxy-13(1)-di/monocyanomethylene-chlorins self-aggregated in the less/lesser polar organic solvents to form chlorosome-like large oligomers in spite of lacking the 13(1)-oxo moiety as the hydrogen-bonding acceptor. Zinc 3(1)-methoxy-13(1)-dicyanomethylene-chlorin gave similar self-aggregates regardless of lack of both the 3(1)-hydroxy and 13(1)-oxo groups. The present self-aggregation was ascribable to stronger coordination of the 3(1)-oxygen atom to the central zinc than the conventional systems, where the electron-withdrawing cyano group(s) increased the coordinative ability of the central zinc through the chlorin π-system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.