The design and development of organic phosphors that exhibit efficient emission at room temperature but do not contain precious metals such as iridium and platinum have attracted increasing attention. We report herein highly efficient green phosphorescence-emitting 1,4-dibenzoyl-2,5-bis(siloxy)benzene crystals in air at room temperature. Remarkable luminescence quantum yields of 0.46 to 0.64 and long lifetimes ranging from 76.0 to 98.3 ms were observed. Xray diffraction analysis of the single crystals revealed that there were several intermolecular interactions causing suppression of intramolecular motion, thereby minimizing nonradiative decay of the triplet excited state. Comparison with the corresponding 2,5-bis(dimethylphenylsilylmethyl) and 2,5-bis(trimethylsilyl) derivatives revealed that the siloxy groups are essential for efficient room temperature phosphorescence. Density functional calculations suggested that σ−n conjugation was operative in the siloxy moieties. Electron spin resonance measurement indicated that the radiative process included generation of the triplet diradical species, whose electron distribution was very similar to that of naphthalene. The present study largely expands the possibilities for the molecular design of precious metal-and halogen-free organic phosphors exhibiting efficient room temperature phosphorescence.
To clarify the role of vascular endothelial growth factor (VEGF) in the process of restenosis, a Palmaz-Schatz stent was implanted in the left anterior descending coronary artery of male pigs at 2 weeks after balloon injury (balloon/artery ratio 1.2:1). The animals were euthanized at 1, 2, and 4 weeks after stenting, and western blot and immunohistochemical analysis were performed using VEGF, fms-like tyrosine kinase (flt)-1, and platelet-derived growth factor (PDGF) antibodies. The expressions of VEGF and flt-1 protein in the neointima were observed as early as 1 week after stenting and remained for up to 4 weeks, while re-endothelialization was complete at 2 weeks. These protein expressions were demonstrated in proliferated smooth muscle cells throughout the entire period after stenting and, in addition, they were observed in the macrophages and endothelial cells of microvessels around stent struts at 4 weeks. The expression pattern of VEGF corresponded with that of PDGF, a growth factor well-known to induce neointimal proliferation. The cell proliferative activity, measured by the proliferating cell nuclear antigen index, around the struts remained high until 4 weeks after stenting, while that in the other areas declined at 4 weeks. These results suggest that VEGF is involved in the process of restenosis not only through its angiogenic properties and induction of monocyte chemotaxis, but also by a synergistic effect with PDGF.
The serum levels of several metabolites are significantly altered in schizophrenia patients. In this study, we performed a targeted analysis of 34 candidate metabolites in schizophrenia patients (n = 25) and compared them with those in age- and gender-matched healthy subjects (n = 27). Orthogonal partial least square-discriminant analysis revealed that complete separation between controls and patients was achieved based on these metabolites. We found that the levels of γ-glutamylcysteine (γ-GluCys), linoleic acid, arachidonic acid, D-serine, 3-hydroxybutyrate, glutathione (GSH), 5-hydroxytryptamine, threonine, and tyrosine were significantly lower, while D-lactate, tryptophan, kynurenine, and glutamate levels were significantly higher in schizophrenia patients compared to controls. Using receiver operating characteristics (ROC) curve analysis, the sensitivity, specificity, and the area under curve of γ-GluCys, a precursor of GSH, and D-lactate, a terminal metabolite of methylglyoxal, were 88.00%, 81.48%, and 0.8874, and 88.00%, 77.78%, and 0.8415, respectively. In addition, serum levels of D-lactate were negatively correlated with γ-GluCys levels in patients, but not in controls. The present results suggest that oxidative stress-induced damage may be involved in the pathogenesis of schizophrenia.
The purpose of this study was to examine mitochondrial respiratory impairment in the diabetic heart. Diabetes mellitus was induced in male Wistar rats by intravenous injection of streptozotocin (STZ) for 2 to 16 weeks (Group D). In some of the diabetic rats, insulin was injected for 2 or 3 weeks prior to sacrifice (Group I). Fasting blood glucose was markedly elevated to greater than 300 mg/dl in Group D and was similar to normal glucose levels in Group I. At 2 weeks after STZ injection, state 3 was only 59.1% of that in the control. Complex I and complex V activities were also significantly reduced to 43.4% and 71.7% of those in the control, respectively. These reductions recovered with insulin treatment. This phenomenon persisted for 16 weeks. Morphological studies revealed swelling of the mitochondria and an increase in lipid droplets in diabetic cardiomyocytes, and these were also improved with insulin treatment. We conclude that in the diabetic heart, disturbance of energy production in cardiac mitochondria is generated by the impairment of oxidative phosphorylation due to depression of complex I and complex V. These changes may contribute the cardiac dysfunction that is a complication of diabetes mellitus.
1. Kynurenine-2-oxoglutarate aminotransferase (isoenzyme 1) was purified to homogeneity from the liver, brain and small intestine of rats by the same procedure. The three enzyme preparations had nearly identical pH optima, substrate specificities and molecular weights. Isoenzyme 1 was active with 2-oxoglutarate but not with pyruvate as amino acceptor, and utilized a wide range of amino acids as amino donors. Amino acids were effective in the following order to activity: L-aspartate greater than L-tyrosine greater than L-phenylalanine greater than L-tryptophan greater than 5-hydroxy-L-tryptophan greater than L-kynurenine. The molecular weight was approximately 88 000 as determined by sucrose-density-gradient centrifugation. The pH optimum was between 8.0 and 8.5. On the basis of substrate specificity, substrate inhibition, subcellular distribution and polyacrylamide-disc-gel electrophoresis, it is suggested that liver, brain and small intestinal kynurenine-2-oxoglutarate aminotransferase (isoenzyme 1) is identical with mitochondrial tyrosine-2-oxoglutarate aminotransferase and also with mitochondrial aspartate-2-oxoglutarate aminotransferase. 2. An additional kynurenine-2-oxoglutarate aminotransferase (isoenzyme 2) was purified from the liver. This enzyme was specific for 2-oxoglutarate and L-kynurenine. Sucrose-density-gradient centrifugation gave a molecular weight of approximately 100 000. The pH optimum was between 6.0 and 6.5. This enzyme was not detected in the brain or small intestine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.