This bioprinting roadmap features salient advances in selected applications of the technique and highlights the status of current developments and challenges, as well as envisioned advances in science and technology, to address the challenges to the young and evolving technique. The topics covered in this roadmap encompass the broad spectrum of bioprinting; from cell expansion and novel bioink development to cell/stem cell printing, from organoid-based tissue organization to bioprinting of human-scale tissue structures, and from building cell/tissue/organ-on-a-chip to biomanufacturing of multicellular engineered living systems. The emerging application of printing-in-space and an overview of bioprinting technologies are also included in this roadmap. Due to the rapid pace of methodological advancements in bioprinting techniques and wide-ranging applications, the direction in which the field should advance is not immediately clear. This bioprinting roadmap addresses this unmet need by providing a comprehensive summary and recommendations useful to experienced researchers and newcomers to the field.
The highly oxygen-permeable material, poly-dimethylsiloxane (PDMS), has the potential to be applied to cell culture microdevices, but cell detachment from PDMS has been a major problem. In this study, we demonstrate that a combination of collagen covalently immobilized PDMS and an adequate oxygen supply enables the establishment of a stable, attached spheroid (hemispheroid) culture of rat hepatocytes. The bottom PDMS surfaces were first treated with oxygen plasma, then coupled with aminosilane followed by a photoreactive crosslinker, and they were finally reacted with a collagen solution. X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that the covalent immobilization of collagen on the surface occurred only where the crosslinker had been introduced. On the collagen-conjugated PDMS surface, rat hepatocytes organized themselves into hemispheroids and maintained the viability and a remarkably high albumin production at least for 2 weeks of culture. In contrast, hepatocytes on the other types of PDMS surfaces formed suspended spheroids that had low albumin production. In addition, we showed that blocking the oxygen supply through the bottom PDMS surface inhibited the formation of hemispheroids and the augmentation of hepatocellular function. These results show that appropriate surface modification of PDMS is a promising approach towards the development of liver tissue microdevices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.