These results show that the injection of mAb 5-1-6 induced a perturbation of the charge- and probably the size-selective glomerular filtration barrier. The observed reduction in the levels of various negatively charged substances resulted in massive proteinuria, implying that alteration of target antigens can affect the integrity of the GBM constituents maintaining the normal barrier function.
In proliferative glomerulonephritis, both macrophages and mesangial cells generate reactive oxygen species (ROS), contributing to the development of glomerular injury. We have attempted to determine which cell produces ROS during anti-Thy1 nephritis (ATN) in rats. The generation of ROS was studied using luminol amplified chemiluminescence (GCL) on isolated glomeruli. Immunohistochemical studies used avidin-biotin complex (ABC) to label macrophages and mesangial cells. Immediately after ATN induction, mesangiolysis and infiltration with ED-1 positive cells (referred to as macrophage) was noted with a peak at day 1. After day 4, mesangial proliferation appeared with a decrease of the ED-1 positive cells and a prominent increase of PCNA positive cells (regarded as mesangial cells). In the early phase of ATN, GCL, reflecting ROS generation, increased along with the appearance of ED-1 positive cells. GCL subsequently decreased as mesangial cells increased. This suggested that macrophage were the principal participants in ROS generation in the early phase of ATN although mesangial cells cannot be completely disregarded in the generation of ROS and development of glomerular injury.
Histone gene expression is regulated in a cell cycle-dependent manner, with a peak at S phase, which is crucial for cell division and genome integrity. However, the detailed mechanisms by which expression of histone genes are tightly regulated remain largely unknown. Fission yeast Ams2, a GATA-type zinc finger motif-containing factor, is required for activation of S phase-specific core histone gene transcription. Here we report the molecular characterisation of Ams2. We show that the zinc finger motif in Ams2 is necessary to bind the histone gene promoter region and to activate histone gene transcription. An N-terminal region of Ams2 acts as a self-interaction domain. Intriguingly, N-terminally truncated Ams2 binds to the histone gene promoters, but does not fully activate histone gene transcription. These observations imply that Ams2 self-interactions are required for efficient core histone gene transcription. Moreover, we show that Ams2 interacts with Teb1, which itself binds to the core histone gene promoters. We discuss the relationships between Ams2 domains and efficient transcription of the core histone genes in fission yeast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.