Lattice-based stochastic simulators are commonly used to study biological reaction-diffusion processes. Some of these schemes that are based on the reaction-diffusion master equation (RDME), can simulate for extended spatial and temporal scales but cannot directly account for the microscopic effects in the cell such as volume exclusion and diffusion-influenced reactions. Nonetheless, schemes based on the high-resolution microscopic lattice method (MLM) can directly simulate these effects by representing each finite-sized molecule explicitly as a random walker on fine lattice voxels. The theory and consistency of MLM in simulating diffusion-influenced reactions have not been clarified in detail. Here, we examine MLM in solving diffusion-influenced reactions in 3D space by employing the Spatiocyte simulation scheme. Applying the random walk theory, we construct the general theoretical framework underlying the method and obtain analytical expressions for the total rebinding probability and the effective reaction rate. By matching Collins-Kimball and lattice-based rate constants, we obtained the exact expressions to determine the reaction acceptance probability and voxel size. We found that the size of voxel should be about 2% larger than the molecule. The theoretical framework of MLM is validated by numerical simulations, showing good agreement with the off-lattice particle-based method, eGFRD. MLM run time is more than an order of magnitude faster than eGFRD when diffusing macromolecules with typical concentrations observed in the cell. MLM also showed good agreements with eGFRD and mean-field models in case studies of two basic motifs of intracellular signaling, the protein production-degradation process and the dual phosphorylation-dephosphorylation cycle. In addition, when a reaction compartment is populated with volume-excluding obstacles, MLM captures the non-classical reaction kinetics caused by anomalous diffusion of reacting molecules.
Microscopic models of reaction-diffusion processes on the cell membrane can link local spatiotemporal effects to macroscopic self-organized patterns often observed on the membrane. Simulation schemes based on the microscopic lattice method (MLM) can model these processes at the microscopic scale by tracking individual molecules, represented as hard-spheres, on fine lattice voxels. Although MLM is simple to implement and is generally less computationally demanding than off-lattice approaches, its accuracy and consistency in modeling surface reactions have not been fully verifed. Using the Spatiocyte scheme, we study the accuracy of MLM in diffusion-influenced surface reactions. We derive the lattice-based bimolecular association rates for two-dimensional surface-surface reaction and one-dimensional volume-surface adsorption according to the Smoluchowski-Collins-Kimball model and random walk theory. We match the time-dependent rates on lattice with off-lattice counterparts to obtain the correct expressions for MLM parameters in terms of physical constants. The expressions indicate that the voxel size needs to be at least 0.6% larger than the molecule to accurately simulate surface reactions on triangular lattice. On square lattice, the minimum voxel size should be even larger, at 5%. We also demonstrate the ability of MLM-based schemes such as Spatiocyte to simulate a reaction-diffusion model that involves all dimensions: three-dimensional diffusion in the cytoplasm, two-dimensional diffusion on the cell membrane and one-dimensional cytoplasm-membrane adsorption. With the model, we examine the contribution of the 2D reaction pathway to the overall reaction rate at different reactant diffusivity, reactivity and concentrations.1
Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units.
We propose a computational method to quantitatively evaluate the systematic uncertainties that arise from undetectable sources in biological measurements using live-cell imaging techniques. We then demonstrate this method in measuring biological cooperativity of molecular binding networks: in particular, ligand molecules binding to cell surface receptor proteins. Our results show how the non-statistical uncertainties lead to invalid identification of the measured cooperativity. Through this computational scheme, the biological interpretation can be more objectively evaluated and understood under a specific experimental configuration of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.