Immune-checkpoint inhibitors (ICIs) have improved clinical outcomes and are becoming a standard treatment for many cancer types. However, these drugs also induce immune-related adverse events, among which interstitial lung disease (ILD) is potentially fatal. The underlying mechanism of ILD induction by ICIs is largely unknown. With the use of flow cytometry, we determined the expression levels of the immune-checkpoint proteins PD-1, TIM-3, TIGIT, LAG-3 and PD-L1 in T cells of bronchoalveolar lavage fluid (BALF) from patients with ICI-related ILD and compared them with those for patients with sarcoidosis or with ILD related to connective tissue disease or cytotoxic drug use. The proportions of CD8+ T cells positive for both PD-1 and TIM-3 or for TIGIT in BALF were significantly higher for ICI-related ILD patients than for those with other types of ILD. A prominent increase in the proportion of PD-1+PD-L1+ cells among CD8+ T cells was also apparent in BALF of a patient with a fatal case of ICI-related ILD, and the proportion of such cells was positively correlated with the grade of ICI-related ILD. Our data reveal the immune-checkpoint profiles of T cells in ICI-related ILD and may provide mechanistic insight into the development of this adverse event.
Crizotinib is the first clinically available tyrosine kinase inhibitor that targets anaplastic lymphoma kinase (ALK) and is associated with the development of complex renal cysts. We now describe a 39-year-old woman who developed infected complex renal cysts during crizotinib treatment. After 10 months of such treatment, she presented with a high fever and low back pain. Computed tomography findings were consistent with complex renal cysts and perilesional inflammation. Interventions including cyst drainage and antibiotic administration contributed to diagnosis and management of the infected cysts.
Background: Lung cancer coexisting with idiopathic pulmonary fibrosis (IPF) or chronic obstructive pulmonary disease (COPD) can lead to poor prognosis. Telomere-related polymorphisms may be implicated in the pathogenesis of these three lung diseases. As to elucidate the mechanism of lung cancer via IPF or COPD may enable early detection and early treatment of the disease, we firstly examined the association between telomere-related polymorphisms and the risk of IPF and COPD in a case-control study. Materials and Methods: A total of 572 patients with IPF (n = 155) or COPD (n = 417), who were derived from our ongoing cohort study, and controls (n = 379), who were derived from our previous case-control study, were included in this study. Telomerase reverse transcriptase (TERT) rs2736100, telomere RNA component (TERC) rs1881984, and oligonucleotide/oligosaccharide-binding fold containing1 (OBFC1) rs11191865 were genotyped with real-time PCR using TaqMan fluorescent probes. Unconditional logistic regression was used to assess the adjusted odds ratios and 95% confidence intervals. Results: TERT rs2736100 was significantly associated with the risk of IPF; increases in the number of this risk allele increased the risk of IPF (Ptrend = 0.008). Similarly, TERT rs2736100 was associated with the risk of COPD. In regard to the combined action of the three loci, increasing numbers of "at-risk" genotypes increased the risk of IPF in a dose-dependent manner (P trend=0.003). Conclusions: TERT rs2736100 was associated with the risks of both IPF and COPD in a Japanese population. A combination of the "at-risk" genotypes might be important to identify the population at risk for IPF more clearly.
Bax is a pro-apoptotic member of the Bcl-2 family of proteins, and plays a central role in mitochondria-dependent apoptosis. Several lines of evidence have implied that Bax is involved in both epithelial apoptosis and fibroblast proliferation in idiopathic pulmonary fibrosis; however, the mechanisms remain unknown. Bax-inhibiting peptide V5 (BIP-V5) exhibits membrane permeability and inhibits the activation of Bax.The purpose of this study was to investigate whether the control of Bax activity by BIP-V5 reduces the degree of bleomycin-induced lung injury. C57BL/6J mice were administered bleomycin and BIP-V5 intratracheally on day 0. Bronchoalveolar lavage fluid and lung tissue were obtained on day 7. Human pulmonary alveolar epithelial cells (A549 cells) and mouse pulmonary alveolar epithelial cells (LA-4 cells) were stimulated with bleomycin to induce apoptosis.Administration of BIP-V5 improved the survival rate and degree of bleomycin-induced lung injury by suppressing Bax activation in mice. BIP-V5 treatment decreased bleomycin-induced apoptosis of alveolar epithelial cell lines (A549 cells and LA-4 cells) by suppressing Bax activation. These results indicate that administration of BIP-V5 may constitute a novel therapeutic strategy against lung injury.
Gefitinib, an epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), is an effective therapeutic agent for non-small cell lung cancer with EGFR mutations. It can cause severe acute pneumonitis in some patients. We previously demonstrated that mice with naphthalene-induced airway epithelial injury developed severe gefitinib-induced pneumonitis and that neutrophils played important roles in the development of the disease. This study aimed to investigate the effects of the neutrophil elastase inhibitor sivelestat on gefitinib-induced pneumonitis in mice. C57BL/6J mice received naphthalene (200 mg/kg) intraperitoneally on day 0. Gefitinib (250 or 300 mg/kg) was orally administered to mice from day -1 until day 13. Sivelestat (150 mg/kg) was administered intraperitoneally from day 1 until day 13. Bronchoalveolar lavage fluid (BALF) and lung tissues were sampled on day 14. Sivelestat treatment significantly reduced the protein level, neutrophil count, neutrophil elastase activity in BALF, and severity of histopathologic findings on day 14 for mice administered with 250 mg/kg of gefitinib. Moreover, sivelestat treatment significantly improved the survival of mice administered with 300 mg/kg of gefitinib. These results indicate that sivelestat is a promising therapeutic agent for severe acute pneumonitis caused by gefitinib.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.