The balance between carbon and nitrogen is a key determinant of seed storage components, and thus, is of great importance to rice and other seed-based food crops. To clarify the influence of the rhizosphere carbon/nitrogen balance during the maturation stage of several seed components, transcriptome analysis was performed on the seeds from rice plants that were provided additional nitrogen fertilization at heading time. As a result, it was assessed that genes associated with molecular processes such as photosynthesis, trehalose metabolism, carbon fixation, amino acid metabolism, and cell wall metabolism were differentially expressed. Moreover, cellulose and sucrose synthases, which are involved in cellulose synthesis, were down-regulated. Therefore, we compared cellulose content of mature seeds that were treated with additional nitrogen fertilization with those from control plants using calcofluor staining. In these experiments, cellulose content in endosperm from plants receiving additional nitrogen fertilization was less than that in control endosperm. Other starch synthesis-related genes such as starch synthase 1, starch phosphorylase 2, and branching enzyme 3 were also down-regulated, whereas some α-amylase and β-amylase genes were up-regulated. On the other hand, mRNA expression of amino acid biosynthesis-related molecules was up-regulated. Moreover, additional nitrogen fertilization caused accumulation of storage proteins and up-regulated Cys-poor prolamin mRNA expression. These data suggest that additional nitrogen fertilization at heading time changes the expression of some storage substance-related genes and reduces cellulose levels in endosperm.
BackgroundSignal peptide peptidase (SPP) is a multi-transmembrane aspartic protease involved in intramembrane-regulated proteolysis (RIP). RIP proteases mediate various key life events by releasing bioactive peptides from the plane of the membrane region. We have previously isolated Arabidopsis SPP (AtSPP) and found that this protein is expressed in the ER. An AtSPP-knockout plant was found to be lethal because of abnormal pollen formation; however, there is negligible information describing the physiological function of AtSPP. In this study, we have investigated the proteolytic activity of AtSPP to define the function of SPPs in plants.ResultsWe found that an n-dodecyl-ß-maltoside (DDM)-solubilized membrane fraction from Arabidopsis cells digested the myc-Prolactin-PP-Flag peptide, a human SPP substrate, and this activity was inhibited by (Z-LL)2-ketone, an SPP-specific inhibitor. The proteolytic activities from the membrane fractions solubilized by other detergents were not inhibited by (Z-LL)2-ketone. To confirm the proteolytic activity of AtSPP, the protein was expressed as either a GFP fusion protein or solely AtSPP in yeast. SDS-PAGE analysis showed that migration of the fragments that were cleaved by AtSPP were identical in size to the fragments produced by human SPP using the same substrate. These membrane-expressed proteins digested the substrate in a manner similar to that in Arabidopsis cells.ConclusionsThe data from the in vitro cell-free assay indicated that the membrane fraction of both Arabidopsis cells and AtSPP recombinantly expressed in yeast actually possessed proteolytic activity for a human SPP substrate. We concluded that plant SPP possesses proteolytic activity and may be involved in RIP.
We constructed a yeast‐based reporter assay system to verify the cleavage activity of Arabidopsis thaliana signal peptide peptidase, a transmembrane protease localized in the endoplasmic reticulum. Arabidopsis thaliana signal peptide peptidase cleaved 15 candidate substrates that lacked the positively charged amino acids, His and Lys, in the C‐region of signal peptides. Our assay system may be suitable for identifying innate substrates with crucial roles in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.