Expression of programmed cell death ligand 1 (PD‐L1) on tumor cells contributes to cancer immune evasion by interacting with programmed cell death 1 on immune cells. γ‐Interferon (IFN‐γ) has been reported as a key extrinsic stimulator of PD‐L1 expression, yet its mechanism of expression is poorly understood. This study analyzed the role of CD74 and its ligand macrophage migration inhibitory factor (MIF) on PD‐L1 expression, by immunohistochemical analysis of melanoma tissue samples and in vitro analyses of melanoma cell lines treated with IFN‐γ and inhibitors of the MIF‐CD74 interaction. Immunohistochemical analyses of 97 melanoma tissue samples showed significant correlations between CD74 and the expression status of PD‐L1 (P < .01). In vitro analysis of 2 melanoma cell lines, which are known to secrete MIF constitutively and express cell surface CD74 following IFN‐γ stimulation, showed upregulation of PD‐L1 levels by IFN‐γ stimulation. This was suppressed by further treatment with the MIF‐CD74 interaction inhibitor, 4‐iodo‐6‐phenylpyrimidine. In the analysis of melanoma cell line WM1361A, which constitutively expresses PD‐L1, CD74, and MIF in its non‐treated state, treatment with 4‐iodo‐6‐phenylpyrimidine and transfection of siRNAs targeting MIF and CD74 significantly suppressed the expression of PD‐L1. Together, the results indicated that MIF‐CD74 interaction directly regulated the expression of PD‐L1 and helps tumor cells escape from antitumorigenic immune responses. In conclusion, the MIF‐CD74 interaction could be a therapeutic target in the treatment of melanoma patients.
To elucidate the spontaneous occurrence of hemorrhage in the pancreatic islet, naïve Crj:CD(SD)IGS rats were given a commercially available standard diet ad libitum over 20 weeks, and were sequentially examined. Islet hemorrhage was morphologically observed from 12 weeks of age, and its incidence was significantly higher in males than in females, with a wide distribution in all pancreatic lobes. The incidence (%) of affected islets to examined islets was increased with age. Hemorrhage was accompanied by brownish pigmentation, and reacted positively for iron by Prussian/Berlin blue staining. In 26 weeks old, most of the islets were dissected by dense fibrous tissue into small nests, and disarranged beta cells were detected by insulin immunostaining. Ultrastructurally, no apparent morphological change was seen in any islet endothelial cell, although blood leakage with migrated macrophages and dense collagen fibers was observed around the capillaries. In serum biochemistry of rats aged 26 weeks, the estradiol level in males with hemorrhage was significantly lower than that in males with non-hemorrhage, presumably suggesting the lack of capillary protective ability. Next, when rats were given a high fat/protein diet over 20 weeks to clarify whether it accelerated the frequency or timing of hemorrhage, its occurrence was essentially identical to that of the animals fed the standard diet. In conclusion, the onset of spontaneous islet hemorrhage was observed predominantly in aged males, resulting from the low estradiol level in serum.
-Indole-3-carbinol (I3C) has a liver tumor promoting activity in rats, and is also known as a cytochrome p450 1A (CYP1A) inducer. The generation of reactive oxygen species (ROS) resulting from CYP1A induction due to I3C, is probably involved in the tumor promotion. To clarify whether ROS generation contributes to I3C's induction of hepatocellular altered foci, partially hepatectomized rats were fed a diet containing 0.5% of I3C for 8 weeks with or without 0.3% N-acetyl-L-cysteine (NAC), an antioxidant, in their drinking water after N-diethylnitrosamine (DEN) initiation. Immunohistochemical analysis showed that the glutathione-S-transferase placental form (GST-P) positive foci promoted by I3C were suppressed by the administration of NAC. The mRNAs of members of the phase II nuclear factor, erythroid derived 2, like 2 (Nrf2) gene batteries, whose promoter region is called as antioxidant response element (ARE), were down-regulated in the DEN-I3C-NAC group compared to the DEN-I3C group, but Cyp1a1 was not suppressed in the DEN-I3C-NAC group compared to the DEN-I3C group. There was no marked difference in production of microsomal ROS and genomic 8-hydroxy-2′-deoxygunosine (8-OHdG) as an oxidative DNA marker between the DEN-I3C-NAC and DEN-I3C groups, while mapkapk3 and Myc were decreased by the NAC treatment. These results indicate that oxidative stress plays an important role for I3C's tumor promotion, and NAC suppresses induction of hepatocellular altered foci with suppressed cytoplasmic oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.