BACKGROUND Congenital cytomegalovirus (CMV) infection is an important cause of hearing loss, and most infants at risk for CMV-associated hearing loss are not identified early in life because of failure to test for the infection. The standard assay for newborn CMV screening is rapid culture performed on saliva specimens obtained at birth, but this assay cannot be automated. Two alternatives — real-time polymerase-chain-reaction (PCR)–based testing of a liquid-saliva or dried-saliva specimen obtained at birth — have been developed. METHODS In our prospective, multicenter screening study of newborns, we compared real-time PCR assays of liquid-saliva and dried-saliva specimens with rapid culture of saliva specimens obtained at birth. RESULTS A total of 177 of 34,989 infants (0.5%; 95% confidence interval [CI], 0.4 to 0.6) were positive for CMV, according to at least one of the three methods. Of 17,662 newborns screened with the use of the liquid-saliva PCR assay, 17,569 were negative for CMV, and the remaining 85 infants (0.5%; 95% CI, 0.4 to 0.6) had positive results on both culture and PCR assay. The sensitivity and specificity of the liquid-saliva PCR assay were 100% (95% CI, 95.8 to 100) and 99.9% (95% CI, 99.9 to 100), respectively, and the positive and negative predictive values were 91.4% (95% CI, 83.8 to 96.2) and 100% (95% CI, 99.9 to 100), respectively. Of 17,327 newborns screened by means of the dried-saliva PCR assay, 74 were positive for CMV, whereas 76 (0.4%; 95% CI, 0.3 to 0.5) were found to be CMV-positive on rapid culture. Sensitivity and specificity of the dried-saliva PCR assay were 97.4% (95% CI, 90.8 to 99.7) and 99.9% (95% CI, 99.9 to 100), respectively. The positive and negative predictive values were 90.2% (95% CI, 81.7 to 95.7) and 99.9% (95% CI, 99.9 to 100), respectively. CONCLUSIONS Real-time PCR assays of both liquid- and dried-saliva specimens showed high sensitivity and specificity for detecting CMV infection and should be considered potential screening tools for CMV in newborns. (Funded by the National Institute on Deafness and Other Communication Disorders.)
Background & Aims-Premature neonates are predisposed to necrotizing enterocolitis (NEC), an idiopathic, inflammatory bowel necrosis. We investigated the hypothesis that NEC occurs in the preterm intestine due to incomplete 'non-inflammatory' differentiation of intestinal macrophages, which increases the risk of a severe mucosal inflammatory response to bacterial products.
Context Reliable methods to screen newborns for congenital cytomegalovirus (CMV) infection are needed for identification of infants at increased risk for hearing loss. Since dried blood spots (DBS) are routinely collected for metabolic screening from all newborns in the United States, there has been interest in using DBS polymerase chain reaction (PCR)-based methods for newborn CMV screening. Objective To determine the diagnostic accuracy of DBS real-time PCR assays for newborn CMV screening Design, Setting, and Participants Between March 2007 and May 2008, infants born at seven medical centers in the U.S. were enrolled in the CMV and Hearing Multicenter Screening (CHIMES) study. Newborn saliva specimens were tested for the detection of early antigen fluorescent foci (DEAFF). Results of saliva DEAFF were compared with a single-primer (from 03/07 to 12/07) and a two-primer (from 01/08 to 05/08) DBS real-time PCR. Infants positive by screening DEAFF or PCR were enrolled in follow-up to confirm congenital infection by the reference standard method, DEAFF on saliva or urine. Main Outcome Measures Sensitivity, specificity and positive and negative likelihood ratios (LRs) of single-primer and two-primer DBS real-time PCR assays for identifying infants with confirmed congenital CMV infection. Results Congenital CMV infection was confirmed in 92 of 20,448 (0.45%; 95% CI, 0.36–0.55) infants. Ninety-one of 92 infants were saliva DEAFF positive on screening. Of the 11,422 infants screened using the single-primer DBS PCR, 17 of 60 (28%) infants were positive with this assay, whereas, among the 9,026 infants screened using the two-primer DBS PCR, 11 of 32 (34%) infants were positive. The single-primer DBS PCR identified congenital CMV infection with a sensitivity of 28.3% (95% CI, 17.4–41.4%), specificity, 99.9% (95% CI, 99.9–100%), positive LR, 803.7 (95% CI, 278.7–2317.9), and negative LR, 0.7 (95% CI, 0.6–0.8). The positive and negative predictive values of the single-primer DBS PCR were 80.9% (95% CI, 58.1–94.5%) and 99.6% (95% CI, 99.5–99.7%), respectively. The two-primer DBS PCR assay identified infants with congenital CMV infection with a sensitivity of 34.4% (95% CI, 18.6–53.2%), specificity, 99.9% (95% CI, 99.9–100%), positive LR, 3088.9 (95% CI, 410.8–23226.7), and negative LR, 0.7 (95% CI, 0.5–0.8). The positive and negative predictive values of the two-primer DBS PCR were 91.7% (95% CI, 61.5–99.8%) and 99.8% (95% CI, 99.6–99.9%), respectively. Conclusions Among newborns, CMV testing with DBS real-time PCR compared with saliva rapid culture had low sensitivity, limiting its value as a screening test.
Most mitochondrial genes of Trypanosoma brucei do not contain the necessary information to make translatable mRNAs. These transcripts must undergo RNA editing, a posttranscriptional process by which uridine residues are added and deleted from mitochondrial mRNAs. RNA editing is believed to be catalyzed by a ribonucleoprotein complex containing endonucleolytic, terminal uridylyl transferase (TUTase), 3' uridine-specific exonucleolytic (U-exo), and ligase activities. None of the catalytic enzymes for RNA editing have been identified. Here we describe the identification of two candidate RNA ligases (48 and 52 kDa) that are core catalytic components of the T. brucei ribonucleoprotein editing complex. Both enzymes share homology to the covalent nucleotidyl transferase superfamily and contain five key signature motifs, including the active site KXXG. In this report, we present data on the proposed 48 kDa RNA editing ligase. We have prepared polyclonal antibodies against recombinant 48 kDa ligase that specifically recognize the trypanosome enzyme. When expressed in trypanosomes as an epitope-tagged fusion protein, the recombinant ligase localizes to the mitochondrion, associates with RNA editing complexes, and adenylates with ATP. These findings provide strong support for the enzymatic cascade model for kinetoplastid RNA editing.
The current pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights an urgent need to develop a safe, efficacious, and durable vaccine. Using a measles virus (rMeV) vaccine strain as the backbone, we developed a series of recombinant attenuated vaccine candidates expressing various forms of the SARS-CoV-2 spike (S) protein and its receptor binding domain (RBD) and evaluated their efficacy in cotton rat, IFNAR−/−mice, IFNAR−/−-hCD46 mice, and golden Syrian hamsters. We found that rMeV expressing stabilized prefusion S protein (rMeV-preS) was more potent in inducing SARS-CoV-2–specific neutralizing antibodies than rMeV expressing full-length S protein (rMeV-S), while the rMeVs expressing different lengths of RBD (rMeV-RBD) were the least potent. Animals immunized with rMeV-preS produced higher levels of neutralizing antibody than found in convalescent sera from COVID-19 patients and a strong Th1-biased T cell response. The rMeV-preS also provided complete protection of hamsters from challenge with SARS-CoV-2, preventing replication in lungs and nasal turbinates, body weight loss, cytokine storm, and lung pathology. These data demonstrate that rMeV-preS is a safe and highly efficacious vaccine candidate, supporting its further development as a SARS-CoV-2 vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.