[1] The impact to the permafrost during and after wildfire was studied using 11 boreal forest fire sites including two controlled burns. Heat transfer by conduction to the permafrost was not significant during fire. Immediately following fire, ground thermal conductivity may increase 10-fold and the surface albedo can decrease by 50% depending on the extent of burning of the surficial organic soil. The thickness of the remaining organic layer strongly affects permafrost degradation and aggradation. If the organic layer thickness was not reduced during the burn, then the active layer (the layer of soil above permafrost that annually freezes and thaws) did not change after the burn in spite of the surface albedo decrease. Any significant disturbance to the surface organic layer will increase heat flow through the active layer into the permafrost. Approximately 3-5 years after severe disturbance and depending on site conditions, the active layer will increase to a thickness that does not completely refreeze the following winter. This results in formation of a talik (an unfrozen layer below the seasonally frozen soil and above the permafrost). A thawed layer (4.15 m thick) was observed at the 1983 burned site. Model studies suggest that if an organic layer of more than 7-12 cm remains following a wildfire then the thermal impact to the permafrost will be minimal in the boreal forests of Interior Alaska.
The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.