This paper considers a synthesis approach to a decentralized autonomous system in which the functional order of the entire system is generated by cooperative interaction among its subsystems, each of which has the autonomy to control a part of the state of the system, and its application to pattern generators of animal locomotion. First, biological locomotory rhythms and their generators, swimming patterns of aquatic animals and gait patterns of quadrupeds, are reviewed briefly. Then, a design principle for autonomous coordination of many oscillators is proposed. Using these results, we synthesize a swimming pattern generator and a gait pattern generator. Finally, it is shown using computer simulations that the proposed systems generate desirable patterns.
We define the degree of aperiodicity of finite automata and show that for every set M of positive integers, the class QA M of finite automata whose degree of aperiodicity belongs to the division ideal generated by M is closed with respect to direct products, disjoint unions, subautomata, homomorphic images and renamings. These closure conditions define qvarieties of finite automata. We show that q-varieties are in a one-toone correspondence with literal varieties of regular languages. We also characterize QA M as the cascade product of a variety of counters with the variety of aperiodic (or counter-free) automata. We then use the notion of degree of aperiodicity to characterize the expressive power of first-order logic and temporal logic with cyclic counting with respect to any given set M of moduli. It follows that when M is finite, then it is decidable whether a regular language is definable in first-order or temporal logic with cyclic counting with respect to moduli in M .
Locomotion involves repetitive movements and is often executed unconsciously and automatically. In order to achieve smooth locomotion, the coordination of the rhythms of all physical parts is important. Neurophysiological studies have related that basic rhythms are produced in the spinal network called, the central pattern generator (CPG), where some neural oscillators interact to self-organize coordinated rhythms. We present a model of the adaptation of locomotion patterns to a variable environment, and attempt to elucidate how the dynamics of locomotion pattern generation are adjusted by the environmental changes. Recent experimental results indicate that decerebrate cats have the ability to learn new gait patterns in a changed environment. In those experiments, a decerebrate cat was set on a treadmill consisting of three moving belts. This treadmill provides a periodic perturbation to each limb through variation of the speed of each belt. When the belt for the left forelimb is quickened, the decerebrate cat initially loses interlimb coordination and stability, but gradually recovers them and finally walks with a new gait. Based on the above biological facts, we propose a CPG model whose rhythmic pattern adapts to periodic perturbation from the variable environment. First, we design the oscillator interactions to generate a desired rhythmic pattern. In our model, oscillator interactions are regarded as the forces that generate the desired motion pattern. If the desired pattern has already been realized, then the interactions are equal to zero. However, this rhythmic pattern is not reproducible when there is an environmental change. Also, if we do not adjust the rhythmic dynamics, the oscillator interactions will not be zero. Therefore, in our adaptation rule, we adjust the memorized rhythmic pattern so as to minimize the oscillator interactions. This rule can describe the adaptive behavior of decerebrate cats well. Finally, we propose a mathematical framework of an adaptation in rhythmic motion. Our framework consists of three types of dynamics: environmental, rhythmic motion, and adaptation dynamics. We conclude that the time scale of adaptation dynamics should be much larger than that of rhythmic motion dynamics, and the repetition of rhythmic motions in a stable environment is important for the convergence of adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.