A microscopy-based diagnosis is the gold standard for the detection and identification of malaria parasites in a patient’s blood. However, the detection of cases involving a low number of parasites and the differentiation of species sometimes requires a skilled microscopist. Although PCR-based diagnostic methods are already known to be very powerful tools, the time required to apply such methods is still much longer in comparison to traditional microscopic observation. Thus, improvements to PCR systems are sought to facilitate the more rapid and accurate detection of human malaria parasites Plasmodium falciparum, P. vivax, P. ovale, and P. malariae, as well as P. knowlesi, which is a simian malaria parasite that is currently widely distributed in Southeast Asia. A nested PCR that targets the small subunit ribosomal RNA genes of malaria parasites was performed using a “fast PCR enzyme”. In the first PCR, universal primers for all parasite species were used. In the second PCR, inner-specific primers, which targeted sequences from P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, were used. The PCR reaction time was reduced with the use of the “fast PCR enzyme”, with only 65 minutes required to perform the first and second PCRs. The specific primers only reacted with the sequences of their targeted parasite species and never cross-reacted with sequences from other species under the defined PCR conditions. The diagnoses of 36 clinical samples that were obtained using this new PCR system were highly consistent with the microscopic diagnoses.
Background: It is well known that strongly acidic electrolyzed water (SAEW) has a potent bactericidal effect. We examined residual viruses on endoscopes that were used in hepatitis B virus (HBV)‐positive and hepatitis C virus (HCV)‐positive patients and evaluated the effectiveness of SAEW in cleaning/disinfecting the endoscopes. Methods: A random sample of endoscopes used in 109 endoscopies on HBV‐positive patients and 107 endoscopies on HCV‐positive patients, who underwent upper gastrointestinal endoscopy for various reasons was taken to determine the degree of HBV and HCV contamination. Samples were taken using 10 mL of physiological saline injected through the forceps channel of each endoscope and collected at the distal end to be assayed using polymerase chain reaction (PCR). After examination, each endoscope was treated with air aspiration, then 200 mL of tap water that contained an enzyme detergent was absorbed, and SAEW was aspirated after cleaning with a brush. After each procedure, PCR was used for comparison and to identify any residual viruses. Results: In saline collected after air aspiration, viruses were detected in 39/109 endoscopes used in HBV patients and in 20/107 endoscopes used in HCV patients. In the saline aspirated with tap water containing an enzyme detergent, HBV was detected in 12/109 endoscopes and HCV was detected in 6/107 endoscopes. However, neither HBV nor HCV was detected after the endoscopes were cleaned manually with a brush and disinfected with SAEW. Conclusion: Endoscopes contaminated with HBV and HCV are effectively cleaned and disinfected by SAEW.
Peroxisome proliferator-activated receptor γ (PPARγ) plays a central role in adipocyte and macrophage differentiation. Pioglitazone (Actos, AD4833), an antidiabetic drug, and 15-deoxy-∆ 12,14 -prostaglandin J2 (PGJ2) have recently been identified as synthetic and natural ligands for PPARγ, respectively. In this study, we examined the effects of PPARγ ligands on differentiation and lipogenesis in promyelocytic leukemia NB4 cells, in which PPARγ protein was expressed and ligand-stimulated PPARγ-specific transcription of adipocyte fatty-acid binding protein was confirmed. Treatment with PPARγ ligand (AD4833 or PGJ2) alone markedly suppressed proliferation but did not induce differentiation. The combined treatment of the cells with PPARγ ligand and all-trans retinoic acid (ATRA) synergistically induced myelocytic differentiation, as determined by nitroblue tetrazolium reducing ability and cell morphology. During these processes of differentiation, we observed marked accumulation of lipid droplets in the cytoplasm. The cellular triacylglycerol levels increased 2.7-fold after treatment with the inducers. Simultaneously, BODIPY-fatty acid was incorporated into the cytosol and concentrated in lipid droplets. The biosynthesis of triacylglycerol-containing BODIPY-fatty acids was increased twofold in differentiated cells. These findings clearly demonstrate that treatment with PPARγ ligands not only induced differentiation but also stimulated lipogenesis in NB4 cells, indicating a close association between differentiation and lipogenesis in PPARγ-stimulated human myeloid cells.
BackgroundIn the Lao PDR, malaria morbidity and mortality have remarkably decreased over the past decade. However, asymptomatic infections in rural villages contribute to the on-going local transmission. The primary objective of this study was to explore the characteristics of infections in a malaria-endemic district of the Lao PDR. The specific objectives were to investigate the prevalence and species of malaria parasites using molecular methods and to assess individual and household parasite levels and the characteristics associated with malaria infection.MethodsThe study population included 870 participants from 236 households in 10 villages of the Xepon district. Interviews, blood examinations and body temperature measurements were conducted between August and September 2013. A multilevel logistic regression model, with adjustment for clustering effects, was used to assess the association between predictor variables and an outcome variable (malaria infection status as principally determined by PCR). The predictive factors included individual-level factors (age, gender, past fever episode, and forest activity during night time) and household-level factors (household member size, household bed net usage/density and a household with one other malaria-infected member).ResultsFifty-two participants (including 26 children) tested positive (positive rate: 6.0 %): Plasmodium falciparum mono-infection was the most common infection (n = 41, 78.8 %), followed by P. falciparum and Plasmodium vivax mixed infections (n = 9, 17.3 %). The majority of infected participants (n = 42, 80.8 %) had no fever episodes in the two previous weeks or a measurable fever (>37 °C) at the time of survey. Living in a household with one other malaria-infected member significantly increased the odds of infection (odds ratio 24.33, 95 % confidence interval 10.15–58.32). Among the 40 households that had at least one infected member, nine households were responsible for 40.4 % of the total infections.Conclusions Plasmodium vivax was detected more frequently than it was reported from the district hospital. Most infections were asymptomatic and sub-microscopic and were highly clustered within households. To further eliminate malaria in Xepon and other similar settings in the country, the National Malaria Control Programme should consider household-based strategies, including reactive case detection targeting the household members of index cases.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-016-1552-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.