Receptors were identified pharmacologically in functional studies where K+ secretion was monitored as transepithelial current (Isc). Further, receptors were identified as transcripts by cloning and sequencing of reverse-transcriptase polymerase chain reaction (RT-PCR) products. Isc under control conditions was 796 +/- 15 microA/cm2 (n = 329) in gerbilline VDC and 900 +/- 75 microA/cm2 (n = 6) in murine VDC. Forskolin (10(-5) m) but not 1, 9-dideoxy-forskolin increased Isc by a factor of 1.42 +/- 0.05 (n = 7). 10(-9) m Arg8-vasopressin and 10(-9) m desmopressin had no significant effect in gerbilline and murine VDC. Isoproterenol, norepinephrine, epinephrine and prenalterol stimulated Isc maximally by a factor of 1.38 +/- 0.04 (n = 7), 1.59 +/- 0.06 (n = 6), 1.64 +/- 0.03 (n = 8) and 1.37 +/- 0.03 (n = 6), respectively. The EC50 values were (1.4 +/- 0.7) x 10(-8) m (n = 36), (2.5 +/- 1.0) x 10(-8) m (n = 31), (1.7 +/- 0.7) x 10(-7) m (n = 36) and (5 +/- 4) x 10(-7) m (n = 32), respectively. Propanolol inhibited isoproterenol-induced stimulation of Isc. Atenolol, ICI118551 and CGP20712A inhibited isoproterenol-induced stimulation of Isc with a pKDB of 5.0 x 10(-8) m (pKDB = 7.30 +/- 0.07, n = 38), 4.4 x 10(-8) m (pKDB = 7.36 +/- 0.14, n = 37) and 6.8 x 10(-12) m (pKDB = 11.17 +/- 0.12, n = 37), respectively. RT-PCR of total RNA isolated from microdissected vestibular labyrinth tissue using specific primers revealed products of the predicted sizes for beta1- and beta2-adrenergic receptors but not for beta3-adrenergic receptors. Sequence analysis of the amplified cDNA fragments from gerbilline tissues revealed a 96.4%, 91.5% and 89.6% identity compared to rat beta1-, beta2- and beta3-adrenergic receptors, respectively. These results demonstrate that K+ secretion in VDC is under the control of beta1- but not beta2- or beta3-adrenergic receptors or vasopressin-receptors.
The present study was designed to clarify the chronological developmental process of monovalent ions (Na+, K+, Cl–) in the endolymph of the mouse in relation to the development of the endocochlear potential (EP). The EP and ionic concentrations were measured simultaneously with the ion-sensitive double-barreled microelectrodes from the scala media of the basal turn. The EP increased abruptly 7 days after birth (DAB) and reached approximately 80 mV 14 DAB. In the earliest postnatal days, the endolymphatic Na+ concentration was significantly higher than that in adult mice, however, the K+ and the Cl– concentrations were lower. The concentrations of all the monovalent ions in endolymph reached adult levels at 7 DAB when the EP was still under 20 mV. These data strongly suggest the presence of a different mechanism between the production of monovalent ions, especially of high K+ in the endolymph and that of EP.
K+ secretion in strial marginal cells (SMC) of stria vascularis (SV) is stimulated by beta1-adrenergic receptors. The aim of the present study was to determine, whether SMC from the gerbil inner ear contain muscarinic receptors that inhibit K+ secretion. Receptors were identified with pharmacological tools in functional studies where K+ secretion was monitored as transepithelial current (Isc). The cytosolic Ca2+ concentration ([Ca2+]i) was measured as fluo-4 fluorescence and cAMP production with a colorimetric immunoassay. Further, receptors were identified in SV as transcripts by cloning and sequencing of reverse-transcriptase polymerase chain reaction (RT-PCR) products. The cholinergic receptor agonist carbachol (CCh) caused a transient increase in [Ca2+]i with a half-maximal concentration value (EC50) of (5 +/- 6) x 10(-6) m (n = 29) and a decrease in basal and stimulated cAMP production. Apical CCh had no effect on Isc but basolateral CCh caused a transient increase in Isc with an EC50 of (3 +/- 1) x 10(-6) m and a sustained decrease of Isc with an EC50 of (1.2 +/- 0.2) x 10(-5) m (n = 129). The effects of CCh on Isc and [Ca2+]i were inhibited in the presence of muscarinic antagonist 10(-6) m atropine. Further, the muscarinic antagonists pirenzipine, methoctramine and para-fluoro-hexahydo-sila-defenidol (pFHHSiD) inhibited the CCh-induced transient increase of Isc with affinity constants (KDB) of 3 x 10(-8) m (pKDB = 7.54 +/- 0.19, n = 17), 2 x 10(-6) m (pKDB = 5.71 +/- 0.26, n = 19) and 2 x 10(-8) m (pKDB = 7.65 +/- 0.28, n = 19) and the sustained decrease of Isc with KDB of 7 x 10(-8) m (pKDB = 7.05 +/- 0.09, n = 33), 6 x 10(-6) m (pKDB = 5.21 +/- 0.13, n = 23), 5 x 10(-8) m (pKDB = 7.34 +/- 0.13, n = 31), respectively. RT-PCR of total RNA isolated from SV using primers specific for the M1-M5 muscarinic receptors revealed products of the predicted sizes for the M3- and M4- but not the M1-, M2- and M5-muscarinic receptor subtypes. Sequence analysis confirmed that amplified cDNA fragments encoded gene-specific nucleotide sequences. These results suggest that K+ secretion in SMC is under the control of M3- and M4-muscarinic receptors that may be located in the basolateral membrane of strial marginal cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.