Background:Functional microRNAs (miRNAs) in exosomes have been recognised as potential stable biomarkers in cancers. The aim of this study is to identify specific miRNAs in exosome as serum biomarkers for the early detection of recurrence in human colorectal cancer (CRC).Methods:Serum samples were sequentially obtained from six patients with and without recurrent CRC. The miRNAs were purified from exosomes, and miRNA microarray analysis was performed. The miRNA expression profiles and copy number aberrations were explored using microarray and array CGH analyses in 124 CRC tissues. Then, we validated exosomal miRNAs in 2 serum sample sets (90 and 209 CRC patients) by quantitative real-time RT–PCR.Results:Exosomal miR-17-92a cluster expression level in serum was correlated with the recurrence of CRC. Exosomal miR-19a expression levels in serum were significantly increased in patients with CRC as compared with healthy individuals with gene amplification. The CRC patients with high exosomal miR-19a expression showed poorer prognoses than the low expression group (P<0.001).Conclusions:Abundant expression of exosomal miR-19a in serum was identified as a prognostic biomarker for recurrence in CRC patients.
BackgroundPredictive biomarkers for the recurrence of hepatocellular carcinoma (HCC) have great benefit in the selection of treatment options, including liver transplantation (LT), for HCC. The purpose of this study was to identify specific microRNAs (miRs) in exosomes from the serum of patients with recurrent HCC and to validate these molecules as novel biomarkers for HCC recurrence.MethodsWe employed microarray-based expression profiling of miRs derived from exosomes in the serum of HCC patients to identify a biomarker that distinguishes between patients with and without HCC recurrence after LT. This was followed by the validation in a separate cohort of 59 HCC patients who underwent living related LT. The functions and potential gene targets of the recurrence-specific miRs were analysed using a database, clinical samples and HCC cell lines.ResultsWe found that miR-718 showed significantly different expression in the serum exosomes of HCC cases with recurrence after LT compared with those without recurrence. Decreased expression of miR-718 was associated with HCC tumour aggressiveness in the validated cohort series. We identified HOXB8 as a potential target gene of miR-718, and its upregulation was associated with poor prognosis.ConclusionCirculating miRs in serum exosomes have potential as novel biomarkers for predicting HCC recurrence.
Fructose-1,6-bisphosphatase (FBP1), the rate-limiting enzyme in gluconeogenesis, is reduced in expression in certain cancers where it has been hypothesized to act as a tumor suppressor, including in hepatocellular carcinoma (HCC). Here, we report functional evidence supporting this hypothesis, providing a preclinical rationale to develop FBP1 as a therapeutic target for HCC treatment. Three independent cohorts totaling 594 cases of HCC were analyzed to address clinical significance. Lower FBP1 expression associated with advanced tumor stage, poor overall survival, and higher tumor recurrence rates. In HCC cell lines, where endogenous FBP1 expression is low, engineering its ectopic overexpression inhibited tumor growth and intracellular glucose uptake by reducing aerobic glycolysis. In patient specimens, promoter methylation and copy-number loss of FBP1 were independently associated with decreased FBP1 expression. Similarly, FBP1 downregulation in HCC cell lines was also associated with copy-number loss. HCC specimens exhibiting low expression of FBP1 had a highly malignant phenotype, including large tumor size, poor differentiation, impaired gluconeogenesis, and enhanced aerobic glycolysis. The effects of FBP1 expression on prognosis and glucose metabolism were confirmed by gene set enrichment analysis. Overall, our findings established that FBP1 downregulation in HCC contributed to tumor progression and poor prognosis by altering glucose metabolism, and they rationalize further study of FBP1 as a prognostic biomarker and therapeutic target in HCC patients. Cancer Res; 76(11); 3265-76. Ó2016 AACR.
We previously developed γ-glutamyl hydroxymethyl rhodamine green (gGlu-HMRG) as a tool to detect viable cancer cells, based on the fact that the enzyme γ-glutamyltranspeptidase (GGT) is overexpressed on membranes of various cancer cells, but is not expressed in normal tissue. Cleavage of the probe by GGT generates green fluorescence. Here, we examined the feasibility of clinical application of gGlu-HMRG during breast-conserving surgery. We found that fluorescence derived from cleavage of gGlu-HMRG allowed easy discrimination of breast tumors, even those smaller than 1 mm in size, from normal mammary gland tissues, with 92% sensitivity and 94% specificity, within only 5 min after application. We believe this rapid, low-cost method represents a breakthrough in intraoperative margin assessment during breast-conserving surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.