Plant SET domain proteins are known to be involved in the epigenetic control of gene expression during plant development. Here, we report that the Arabidopsis SET domain protein, SDG4, contributes to the epigenetic regulation of pollen tube growth, thus affecting fertilization. Using an SDG4-GFP fusion construct, the chromosomal localization of SDG4 was established in tobacco BY-2 cells. In Arabidopsis, sdg4 knockout showed reproductive defects. Tissue-specific expression analyses indicated that SDG4 is the major ASH1-related gene expressed in the pollen. Immunological analyses demonstrated that SDG4 was involved in the methylation of histone H3 in the inflorescence and pollen grains. The significant reduction in the amount of methylated histone H3 K4 and K36 in sdg4 pollen vegetative nuclei resulted in suppression of pollen tube growth. Our results indicate that SDG4 is capable of modulating the expression of genes that function in the growth of pollen tube by methylation of specific lysine residues of the histone H3 in the vegetative nuclei.
In this study, we investigated the picosecond optical pulse generation from a 1064-nm distributed feedback laser diode under strong gain switching. The spectrum of the generated optical pulses was manipulated in two different ways: (i) by extracting the short-wavelength components of the optical pulse spectrum and (ii) by compensating for spectral chirping in the extracted mid-spectral region. Both of these methods shortened the optical pulse duration to approximately 7 ps. These optical pulses were amplified to over 20-kW peak power for two-photon microscopy. We obtained clear two-photon images of neurons in a fixed brain slice of H-line mouse expressing enhanced yellow fluorescent protein. Furthermore, a successful experiment was also confirmed for in vivo deep region H-line mouse brain neuron imaging.
a b s t r a c tA number of biopharmaceuticals are available as lyophilized formulations along with a prefilled syringe (PFS) containing water for injection (WFI). Submicron-and micron-size droplets of lubricating silicone oil (SO) applied to the inner surface of the PFS barrel might migrate into the WFI, to which protein pharmaceuticals can adsorb, potentially inducing an immune response. In the present study, we subjected siliconized cyclo-olefin polymer PFSs filled with WFI to dropping stress to simulate actual shipping conditions as well as evaluated the risk associated with the released SO droplets. The results confirmed the undesirable effects of SO on therapeutic proteins, including adsorption to SO droplets and increased secretion of several innate cytokines from human peripheral blood mononuclear cells of a small donor panel. Assessment of immunogenicity in vivo using BALB/c mice revealed a slight increase in the plasma concentrations of antidrug antibodies over 21 days in response to SO-containing antibody samples compared to the absence of SO. These results indicate that SO droplets form complexes with pharmaceutical proteins that can potentially invoke early-and late-stage immune responses. Therefore, the use of SO-free cyclo-olefin polymer PFSs as primary containers for WFI could contribute to the enhanced safety of reconstituted biopharmaceuticals.
We describe novel humanized anti-CD20 monoclonal antibodies (mAbs) developed for therapeutic use on the basis of their physicochemical properties and cellular cytotoxicity. A distinct correlation between apparent dissociation constants (K d ) and apoptotic activity for eight murine anti-CD20 mAbs (OUBM1-OUBM8) and previously-developed murine anti-CD20 mAbs enabled us to categorize anti-CD20 mAbs into two groups. Group A mAbs had lower K d values and did not induce definite apoptosis, while Group B mAbs had greater K d values and did induce definite apoptosis. A murine version mAb of rituximab, 2B8, belongs to Group B. An epitope analysis showed that the epitope of two murine mAbs, OUBM3 and OUBM6, differed from that of 2B8 or 2F2 (ofatumumab). Two mAbs, OUBM3 from Group A and OUBM6 from Group B, were selected and humanized. As expected, the humanized OUBM3 with the lower K d did not induce apoptosis, while the humanized OUBM6 (hOUBM6) with the greater K d did. Both hOU-BM3 and hOUBM6 induced highly-effective, complement-dependent cytotoxicity and antibody-dependent, cell-mediated cytotoxicity against Burkitt's and follicular lymphomas. Importantly, hOUBM6 exhibited cellular cytotoxicity against diffuse, large B cells that are less effectively depleted by rituximab and also exhibited effective cytotoxicity against tumor cells from human CD20(+) leukemia and lymphoma patients. These results suggest the potential impact of the further development of our anti-CD20 mAbs. Our study shows that the selection of mAbs based on their physicochemical parameters, followed by the biological activity assessment for the selected mAbs, is a rational and efficient approach for pharmaceutical mAb development. (Cancer Sci 2010; 101: 201-209) R ecently, the application of immunotherapy using monoclonal antibodies (mAbs) has increased considerably, and numerous mAb candidates are under development or are being assessed in clinical trials. In the case of mAb development using murine mAbs, the degree of complement-dependent cytotoxicity (CDC) and antibody-dependent, cell-mediated cytotoxicity (ADCC) activity can be measured after humanization, which implies that it is difficult to evaluate the clinical effectiveness of these antibodies (Abs) before humanization. The humanization of large numbers of murine mAbs without data to support future clinical use requires massive investments in terms of time, labor, and funding. Furthermore, the evaluation of bioactivity is often dependent on the assay systems themselves. Therefore, it is highly desirable to select candidates for humanization on the basis of the intrinsic parameters of the mAb itself, such as its dissociation constant and epitope, at an early stage of mAb development. In order to establish an efficient and rational method of developing mAbs, we focused on anti-CD20 mAbs as the ideal study target for studying the intrinsic properties of mAbs, because data on these Abs is available.CD20 is a B-cell-specific tetra-transmembrane protein with a molecular weight of 33-37 kDa. It i...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.