Apple latent spherical virus (ALSV) vectors were evaluated for virus-induced gene silencing (VIGS) of endogenous genes among a broad range of plant species. ALSV vectors carrying partial sequences of a subunit of magnesium chelatase (SU) and phytoene desaturase (PDS) genes induced highly uniform knockout phenotypes typical of SU and PDS inhibition on model plants such as tobacco and Arabidopsis thaliana, and economically important crops such as tomato, legume, and cucurbit species. The silencing phenotypes persisted throughout plant growth in these plants. In addition, ALSV vectors could be successfully used to silence a meristem gene, proliferating cell nuclear antigen and disease resistant N gene in tobacco and RCY1 gene in A. thaliana. As ALSV infects most host plants symptomlessly and effectively induces stable VIGS for long periods, the ALSV vector is a valuable tool to determine the functions of interested genes among a broad range of plant species.
The proteins encoded by rice black streaked dwarf fijivirus (RBSDV) genomic segments 7-10 (S7-S10) were characterized. Open reading frames (ORFs) from these segments were expressed as fusion proteins in Escherichia coli. Antibodies raised against the expressed products were used as probes to determine whether the viral ORFs encode structural proteins. In Western blots, antibodies to the expressed S8 and S10 products reacted with a core capsid (65 kDa) and a major outer capsid (56 kDa) protein, respectively, while none of the antibodies to S7 and S9 products reacted with structural
Barley stripe mosaic virus (BSMV) encodes three movement proteins in an overlapping triple gene block (TGB), but little is known about the physical interactions of these proteins. We have characterized a ribonucleoprotein (RNP) complex consisting of the TGB1 protein and plus-sense BSMV RNAs from infected barley plants and have identified TGB1 complexes in planta and in vitro. Homologous TGB1 binding was disrupted by site-specific mutations in each of the first two N-terminal helicase motifs but not by mutations in two C-terminal helicase motifs. The TGB2 and TGB3 proteins were not detected in the RNP, but affinity chromatography and yeast two-hybrid experiments demonstrated that TGB1 binds to TGB3 and that TGB2 and TGB3 form heterologous interactions. These interactions required the TGB2 glycine 40 and the TGB3 isoleucine 108 residues, and BSMV mutants containing these amino acid substitution were unable to move from cell to cell. Infectivity experiments indicated that TGB1 separated on a different genomic RNA from TGB2 and TGB3 could function in limited cell-to-cell movement but that the rates of movement depended on the levels of expression of the proteins and the contexts in which they are expressed. Moreover, elevated expression of the wild-type TGB3 protein interfered with cell-to-cell movement but movement was not affected by the similar expression of a TGB3 mutant that fails to interact with TGB2. These experiments suggest that BSMV movement requires physical interactions of TGB2 and TGB3 and that substantial deviation from the TGB protein ratios expressed by the wild-type virus compromises movement.For a virus to successfully invade a plant and cause disease, it must have the ability to move from cell to cell, establish localized infection foci, enter and exit the vascular system, and develop systemic infections. To accomplish these activities, plant viruses encode one or more movement proteins (MPs) that facilitate cell-to-cell movement and vascular transport. These proteins generally localize at plasmodesmata (PD) and increase the permeability of the PD sufficiently to permit the movement of macromolecules through the desmotubule (25, 38). Many MPs have RNA binding activities, and some act in concert with other virus-encoded proteins to facilitate virus movement and other activities such as RNA unwinding (18) or suppression of gene silencing (1, 24). Several general classes of viral MPs are known to exist, and these proteins provide tools for investigating a wide range of host-virus interactions and cellular functions (25,26).The most extensively investigated MPs are members of the 30K superfamily that are encoded by a large number of RNA and DNA viruses with different genome organizations (27). Over the past 15 years, studies of the processes carried out by proteins of the 30K movement family have provided great insight into the requirements for local and long-distance transport of Tobacco mosaic virus and a number of other viruses (4,15,25,38). The triple gene block (TGB) superfamily represents anoth...
Infectious cDNA clones of Apple latent spherical virus (ALSV)-RNA1 (pEALSR1) and -RNA2 (pEALSR2) were constructed using an enhanced 35S promoter. A viral vector was constructed from pEALSR2 by creating artificial protease processing sites by duplicating the Q/G protease cleavage site between 42KP and Vp25. Eight RNA2-derived vectors expressing GFP with varied sizes of duplications around the 42KP/Vp25 junction were constructed and tested for infectivity in Chenopodium quinoa. The results indicated that greater than five aa from the C-terminus of 42KP and N-terminus of Vp25 in duplication are necessary for systemic infection. In infected C. quinoa plants, GFP fluorescence was observed in both inoculated and upper leaves. Serial passages of the viruses derived from the above vectors in C. quinoa showed that the size of duplications affected the stability of the GFP gene. The version of the RNA2-vector (pER2L5R5GFP) with the shortest duplications and its silent mutant version could stably express GFP in leaves even after at least nine serial passages. ALSV-RNA2 vector has a capacity to maintain a DNA insert as long as 1300 bp because Apple chlorotic leaf spot virus movement protein (50KP) gene could be expressed in C. quinoa. Inoculation of a virus derived from pER2L5R5GFP to apple seedlings resulted in the expression of GFP fluorescence in uninoculated upper leaves, indicating that the vector is available for the expression of foreign genes in apple trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.