Recently, several groups have developed green fluorescent protein (GFP)-based Ca(2+) probes. When applied in cells, however, these probes are difficult to use because of a low signal-to-noise ratio. Here we report the development of a high-affinity Ca(2+) probe composed of a single GFP (named G-CaMP). G-CaMP showed an apparent K(d) for Ca(2+) of 235 nM. Association kinetics of Ca(2+) binding were faster at higher Ca(2+) concentrations, with time constants decreasing from 230 ms at 0.2 microM Ca(2+) to 2.5 ms at 1 microM Ca(2+). Dissociation kinetics (tau approximately 200 ms) are independent of Ca(2+) concentrations. In HEK-293 cells and mouse myotubes expressing G-CaMP, large fluorescent changes were observed in response to application of drugs or electrical stimulations. G-CaMP will be a useful tool for visualizing intracellular Ca2+ in living cells. Mutational analysis, together with previous structural information, suggests the residues that may alter the fluorescence of GFP.
Induced pluripotent stem cells (iPSCs) constitute a potential source of autologous patient-specific cardiomyocytes for cardiac repair, providing a major benefit over other sources of cells in terms of immune rejection. However, autologous transplantation has substantial challenges related to manufacturing and regulation. Although major histocompatibility complex (MHC)-matched allogeneic transplantation is a promising alternative strategy, few immunological studies have been carried out with iPSCs. Here we describe an allogeneic transplantation model established using the cynomolgus monkey (Macaca fascicularis), the MHC structure of which is identical to that of humans. Fibroblast-derived iPSCs were generated from a MHC haplotype (HT4) homozygous animal and subsequently differentiated into cardiomyocytes (iPSC-CMs). Five HT4 heterozygous monkeys were subjected to myocardial infarction followed by direct intra-myocardial injection of iPSC-CMs. The grafted cardiomyocytes survived for 12 weeks with no evidence of immune rejection in monkeys treated with clinically relevant doses of methylprednisolone and tacrolimus, and showed electrical coupling with host cardiomyocytes as assessed by use of the fluorescent calcium indicator G-CaMP7.09. Additionally, transplantation of the iPSC-CMs improved cardiac contractile function at 4 and 12 weeks after transplantation; however, the incidence of ventricular tachycardia was transiently, but significantly, increased when compared to vehicle-treated controls. Collectively, our data demonstrate that allogeneic iPSC-CM transplantation is sufficient to regenerate the infarcted non-human primate heart; however, further research to control post-transplant arrhythmias is necessary.
The endoplasmic reticulum (ER) and mitochondria accumulate Ca2+ within their lumens to regulate numerous cell functions. However, determining the dynamics of intraorganellar Ca2+ has proven to be difficult. Here we describe a family of genetically encoded Ca2+ indicators, named calcium-measuring organelle-entrapped protein indicators (CEPIA), which can be utilized for intraorganellar Ca2+ imaging. CEPIA, which emit green, red or blue/green fluorescence, are engineered to bind Ca2+ at intraorganellar Ca2+ concentrations. They can be targeted to different organelles and may be used alongside other fluorescent molecular markers, expanding the range of cell functions that can be simultaneously analysed. The spatiotemporal resolution of CEPIA makes it possible to resolve Ca2+ import into individual mitochondria while simultaneously measuring ER and cytosolic Ca2+. We have used these imaging capabilities to reveal differential Ca2+ handling in individual mitochondria. CEPIA imaging is a useful new tool to further the understanding of organellar functions.
Genetically encoded sensor proteins provide unique opportunities to advance the understanding of complex cellular interactions in physiologically relevant contexts; however, previously described sensors have proved to be of limited use to report cell signaling in vivo in mammals. Here, we describe an improved Ca 2؉ sensor, GCaMP2, its inducible expression in the mouse heart, and its use to examine signaling in heart cells in vivo. The high brightness and stability of GCaMP2 enable the measurement of myocyte Ca 2؉ transients in all regions of the beating mouse heart and prolonged pacing and mapping studies in isolated, perfused hearts. Transgene expression is efficiently temporally regulated in cardiomyocyte GCaMP2 mice, allowing recording of in vivo signals 4 weeks after transgene induction. High-resolution imaging of Ca 2؉ waves in GCaMP2-expressing embryos revealed key aspects of electrical conduction in the preseptated heart. At embryonic day (e.d.) 10.5, atrial and ventricular conduction occur rapidly, consistent with the early formation of specialized conduction pathways. However, conduction is markedly slowed through the atrioventricular canal in the e.d. 10.5 heart, forming the basis for an effective atrioventricular delay before development of the AV node, as rapid ventricular activation occurs after activation of the distal AV canal tissue. Consistent with the elimination of the inner AV canal muscle layer at e.d. 13.5, atrioventricular conduction through the canal was abolished at this stage. These studies demonstrate that GCaMP2 will have broad utility in the dissection of numerous complex cellular interactions in mammals, in vivo. atrioventricular node ͉ Ca 2ϩ imaging ͉ genetic sensor ͉ heart development ͉ fluorescent Ca 2ϩ sensor T ransient, highly regulated elevations in cytosolic free Ca 2ϩ underlie numerous cellular processes that enable organ function (1-5). In the mammalian heart, for example, efficient function depends upon the coordinated release and reuptake of Ca 2ϩ ions from intracellular organelles in millions of cells, at rates between 0.5 and 15 Hz throughout life, and even subtle dysfunctions of this process can result in cardiac arrythmias and sudden death. Whereas fluorescent imaging using purpose-designed small Ca 2ϩ -binding indicator molecules has enabled important advances in the understanding of the regulatory processes underlying Ca 2ϩ signaling in single cells (6, 7), these approaches have significant limitations in the context of a complex, multicellular organ such as the beating heart. Thus, difficulties in obtaining an adequate and stable concentration of indicator molecules within cells deep in complex tissues, the incompatibility of loading procedures in the in vivo setting, and the inability to selectively load specific cell lineages constitute substantial experimental constraints on the study of multicellular, processive Ca 2ϩ signaling in complex organ function. Genetically encoded sensors of Ca 2ϩ signaling (7-13) hold great promise in this regard and have been used t...
A fundamental issue in cortical processing of sensory information is whether top-down control circuits from higher brain areas to primary sensory areas not only modulate but actively engage in perception. Here, we report the identification of a neural circuit for top-down control in the mouse somatosensory system. The circuit consisted of a long-range reciprocal projection between M2 secondary motor cortex and S1 primary somatosensory cortex. In vivo physiological recordings revealed that sensory stimulation induced sequential S1 to M2 followed by M2 to S1 neural activity. The top-down projection from M2 to S1 initiated dendritic spikes and persistent firing of S1 layer 5 (L5) neurons. Optogenetic inhibition of M2 input to S1 decreased L5 firing and the accurate perception of tactile surfaces. These findings demonstrate that recurrent input to sensory areas is essential for accurate perception and provide a physiological model for one type of top-down control circuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.