The sequence of 5,037 amino acids composing the ryanodine receptor from rabbit skeletal muscle sarcoplasmic reticulum has been deduced by cloning and sequencing the complementary DNA. The predicted structure suggests that the calcium release channel activity resides in the C-terminal region of the receptor molecule, whereas the remaining portion constitutes the 'foot' structure spanning the junctional gap between the sarcoplasmic reticulum and the transverse tubule.
BackgroundIn recent years, several oral antidiabetic drugs with new mechanisms of action have become available, expanding the number of treatment options. Sodium/glucose cotransporter-2 (SGLT2) inhibitors are a new class of oral antidiabetic drugs with an insulin-independent mechanism promoting urinary glucose excretion. We report the results of a combined Phase 2 and 3 clinical study (Japic CTI-101349) of the SGLT2 inhibitor tofogliflozin (CSG452, RG7201) in Japanese patients with type 2 diabetes mellitus.MethodsThe efficacy and safety of tofogliflozin were assessed in this multicenter, placebo-controlled, randomized, double-blind parallel-group study involving 230 patients with type 2 diabetes mellitus with inadequate glycemic control on diet/exercise therapy. Between 30 October 2010 and 28 February 2012, patients at 33 centers were randomized to either placebo (n = 56) or tofogliflozin (10, 20, or 40 mg; n = 58 each) orally, once daily for 24 weeks. The primary efficacy endpoint was the change from baseline in HbA1c at week 24.ResultsOverall, 229 patients were included in the full analysis set (placebo: n = 56; tofogliflozin 10 mg: n = 57; tofogliflozin 20 and 40 mg: n = 58 each). The least squares (LS) mean change (95% confidence interval) from baseline in HbA1c at week 24 was −0.028% (−0.192 to 0.137) in the placebo group, compared with −0.797% (−0.960 to −0.634) in the tofogliflozin 10 mg group, −1.017% (−1.178 to −0.856) in the tofogliflozin 20 mg group, and −0.870% (−1.031 to −0.709) in the tofogliflozin 40 mg group (p < 0.0001 for the LS mean differences in all tofogliflozin groups vs placebo). There were also prominent decreases in fasting blood glucose, 2-h postprandial glucose, and body weight in all tofogliflozin groups compared with the placebo group. The main adverse events were hyperketonemia, ketonuria, and pollakiuria. The incidence of hypoglycemia was low. Furthermore, most adverse events were classified as mild or moderate in severity.ConclusionsTofogliflozin 10, 20, or 40 mg administered once daily as monotherapy significantly decreased HbA1c and body weight, and was generally well tolerated in Japanese patients with type 2 diabetes mellitus. Phase 3 studies were recently completed and support the findings of this combined Phase 2 and 3 study.Trial registrationThis study was registered in the JAPIC clinical trials registry (ID: Japic CTI-101349).
Proteome analysis of bladder cancer with narrow-range pH 2-DE has identified a novel protein on chromosome 7 encoded by ORF 24 (C7orf24) as one of the highly expressed proteins in cancer cells. C7orf24 is currently registered in the protein database as a hypothetical protein with unknown function. The homologs of C7orf24 in other animals have also been registered as putative protein genes. Western blot analysis using a mAb against C7orf24 confirmed its higher expression in bladder cancer compared with normal tissue. Several other cancer cell lines were also found to express C7orf24. However, the introduction of C7orf24 into Rat-1 or NIH3T3 cells did not cause malignant transformation. A stable transfectant of NIH3T3 cells with recombinant retrovirus vector was produced for a growth rate assay, and a higher growth rate was observed in C7orf24-expressing cells compared with the controls. Six kinds of small interfering RNAs (siRNAs) were then produced, and C7orf24-siRNA#5 showed a strong knockdown effect on protein expression and significant antiproliferative effects on cancer cell lines were demonstrated by the MTT assay. Therefore, C7orf24 may have an important role in cancer cell proliferation, and may be an appropriate therapeutic target molecule against cancer.
We previously showed that granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) stimulate the differentiation of human monocytes into two phenotypically distinct types of macrophages. However, in vivo, not only CSF but also many other cytokines are produced under various conditions. Those cytokines may modulate the differentiation of monocytes by CSFs. In the present study, we showed that CD14+ adherent human monocytes can differentiate into CD1+relB+ dendritic cells (DC) by the combination of GM-CSF plus interleukin-4 (IL-4) and that they differentiate into tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like multinucleated giant cells (MGC) by the combination of M-CSF plus IL-4. However, the monocyte-derived DC were not terminally differentiated cells; they could still convert to macrophages in response to M-CSF. Tumor necrosis factor-alpha (TNF-alpha) stimulated the terminal differentiation of the DC by downregulating the expression of the M-CSF receptor, cfms mRNA, and aborting the potential to convert to macrophages. In contrast to IL-4, interferon-gamma (IFN-gamma) had no demonstrable effect on the differentiation of monocytes. Rather, IFN- gamma antagonized the effect of IL-4 and suppressed the DC and MGC formation induced by GM-CSF + IL-4 and M-CSF + IL-4, respectively. Taken together, these results provide a new aspect to our knowledge of monocyte differentiation and provide evidence that human monocytes are flexible in their differentiation potential and are precursors not only of macrophages but also of CD1+relB+DC and TRAP-positive MGC. Such a diverse pathway of monocyte differentiation may constitute one of the basic mechanisms of immune regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.