Patterning of the mouse embryo along the anteroposterior axis during body plan development requires migration of the distal visceral endoderm (DVE) towards the future anterior side by a mechanism that has remained unknown. Here we show that Nodal signalling and the regionalization of its antagonists are required for normal migration of the DVE. Whereas Nodal signalling provides the driving force for DVE migration by stimulating the proliferation of visceral endoderm cells, the antagonists Lefty1 and Cerl determine the direction of migration by asymmetrically inhibiting Nodal activity on the future anterior side.
The bilateral symmetry of the mouse embryo is broken by leftward fluid flow in the node. However, it is unclear how this directional flow is then translated into the robust, left side-specific Nodal gene expression that determines and coordinates left-right situs throughout the embryo. While manipulating Nodal and Lefty gene expression, we have observed phenomena that are indicative of the involvement of a self-enhancement and lateral-inhibition (SELI) system. We constructed a mathematical SELI model that not only simulates, but also predicts, experimental data. As predicted by the model, Nodal expression initiates even on the right side. These results indicate that directional flow represents an initial small difference between the left and right sides of the embryo, but is insufficient to determine embryonic situs. Nodal and Lefty are deployed as a SELI system required to amplify this initial bias and convert it into robust asymmetry.
Anterior-posterior polarity of the mouse embryo has been thought to be established when distal visceral endoderm (DVE) at embryonic day (E) 5.5 migrates toward the future anterior side to form anterior visceral endoderm (AVE). Lefty1, a marker of DVE and AVE, is asymmetrically expressed in implanting mouse embryos. We now show that Lefty1 is expressed first in a subset of epiblast progenitor cells and then in a subset of primitive endoderm progenitors. Genetic fate mapping indicated that the latter cells are destined to become DVE. In contrast to the accepted notion, however, AVE is not derived from DVE but is newly formed after E5.5 from Lefty1(-) visceral endoderm cells that move to the distal tip. Concomitant with DVE migration, all visceral endoderm cells in the embryonic region undergo global movement. In embryos subjected to genetic ablation of Lefty1-expressing DVE cells, AVE was formed de novo but the visceral endoderm including the newly formed AVE failed to migrate, indicating that DVE guides the migration of AVE by initiating the global movement of visceral endoderm cells. Future anterior-posterior polarity is thus already determined by Lefty1(+) blastomeres in the implanting blastocyst.
Mammalian male preimplantation embryos develop more quickly than females . Using enhanced green fluorescent protein (EGFP)-tagged X chromosomes to identify the sex of the embryos, we compared gene expression patterns between male and female mouse blastocysts by DNA microarray. We detected nearly 600 genes with statistically significant sex-linked expression; most differed by 2-fold or less. Of 11 genes showing greater than 2.5-fold differences, four were expressed exclusively or nearly exclusively sex dependently. Two genes (Dby and Eif2s3y) were mapped to the Y chromosome and were expressed in male blastocysts. The remaining two (Rhox5/Pem and Xist) were mapped to the X chromosome and were predominantly expressed in female blastocysts. Moreover, Rhox5/Pem was expressed predominantly from the paternally inherited X chromosome, indicating sex differences in early epigenetic gene regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.