Among the members of the major facilitator superfamily of Saccharomyces cerevisiae, we identified genes involved in the transport into vacuoles of the basic amino acids histidine, lysine, and arginine. ATP-dependent uptake of histidine and lysine by isolated vacuolar membrane vesicles was impaired in YMR088c, a vacuolar basic amino acid transporter 1 (VBA1)-deleted strain, whereas uptake of tyrosine or calcium was little affected. This defect in histidine and lysine uptake was complemented fully by introducing the VBA1 gene and partially by a gene encoding Vba1p fused with green fluorescent protein, which was determined to localize exclusively to the vacuolar membrane. A defect in the uptake of histidine, lysine, or arginine was also observed in the vacuolar membrane vesicles of mutants YBR293w (VBA2) and YCL069w (VBA3). These three VBA genes are closely related phylogenetically and constitute a new family of basic amino acid transporters in the yeast vacuole.
We have identified the Schizosaccharomyces pombe SPBC3E7.06c gene (fnx2 + ) from a homology search with the fnx1 + gene involving in G 0 arrest upon nitrogen starvation. Green fluorescent protein-fused Fnx1p and Fnx2p localized exclusively to the vacuolar membrane. Uptake of histidine or isoleucine by S. pombe cells was inhibited by concanamycin A, a specific inhibitor of the vacuolar H + -ATPase. Amino acid uptake was also defective in the vacuolar ATPase mutant, suggesting that vacuolar compartmentalization is critical for amino acid uptake by whole cells. In both Dfnx1 and Dfnx2 mutant cells, uptake of lysine, isoleucine or asparagine was impaired. These results suggest that fnx1 + and fnx2 + are involved in vacuolar amino acid uptake in S. pombe.
Vba5p is closest to Vba3p in the vacuolar transporter for basic amino acids (VBA) family of Saccharomyces cerevisiae. We found that green fluorescence protein (GFP)-tagged Vba5p localized exclusively to the plasma membrane. The uptake of lysine and arginine by whole cells was little affected by deletion of the VBA5 gene, but was stimulated by overexpression of the VBA5 gene. The inhibitory effect of 4-nitroquinoline N-oxide on cell growth was accelerated by expression of the VBA5 gene, and was lessened by the addition of arginine. These results suggest that Vba5p is a plasma membrane protein involved in amino acid uptake and drug sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.