Designs and syntheses of isocyanurates (1-3) are described on the basis of a novel concept that two enantiotopic faces of C(s) -symmetric, prochiral planar molecules are differentiated with a location of groups at the top or bottom of the planar skeleton using a rigid linker. Such isocyanurates are atropisomeric. The planar-chiral structures of 1 and 2(anti) (anti-conformer of 2) were confirmed by single-crystal X-ray analyses, and the space groups were P1 (for 1) and P2(1)/c (for 2(anti)), resulting that the crystals were racemates. Optical resolutions of 1-3 were successfully accomplished by using chiral high-performance liquid chromatography technique in combination with circular dichroism, absorption, and nuclear magnetic resonance spectroscopies and mass spectrometry. Furthermore, the rotational barriers (ΔG(‡)s) related to isomerizations of 1-3 were estimated to be 27.2 (for 1 at 50 °C), 27.6 (for 2(anti) at 50 °C), and 40.6 (for 3(syn) at 150 °C) kcal/mol. The ΔG(‡)s of 2 and 3 were higher than that of 1 and, in particular, that of 3 was highest among them. This result indicates that an introduction of bulky substituents and an intramolecular bridging are effective for inhibitions of the isomerizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.