In 4D printing, structures with gradients in physical properties are 3D printed in order to dramatically increase deformation. For example, printing bilayer structures with passive and active layers has been proposed, however, these methods have the disadvantages that the material of each layer is mixed, and the modeling process is complicated. Herein, we present a method of creating gradient gels with different degrees of polymerization on the UV-exposed side and the other side using a single material by simply increasing the amount of initiator. This gel is the first example in which the differential swelling ratio between two sides causes the gradient to curl inward toward the UV-exposed side. The mechanical properties (swelling ratio and Young’s modulus) were measured at different material concentrations and structures, and the effects of each on deformation were analyzed and simulated. The results show that adding an initiator concentration of 0.2 (mol/L) or more causes deformation, that increasing the crosslinker concentration by a factor of three or more increases deformation, and that adding a hinge structure limits the gradient gel to deformation up to 90°. Thus, it was found that the maximum deformation can be predicted to some extent by simulation. In the future, we will be able to create complex structures while utilizing simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.