An obesity-related prediabetic state is characterised by metabolic abnormalities such as post-glucose load hyperglycaemia and dyslipidaemia and consequently increases the risk for type 2 diabetes and cardiovascular disease. This study aimed to investigate the effects of Lactobacillus casei strain Shirota (LcS) on metabolic abnormalities in obese prediabetic subjects in a randomised, double-blind, placebo-controlled trial. Herein, 100 obese subjects (body mass index ≥25), who had moderate post-load hyperglycaemia (1-hr post-load plasma glucose (PG) levels ≥180 mg/dl during the oral glucose tolerance test), consumed LcS-fermented milk or placebo milk daily for 8 weeks. The post-load PG and fasting blood markers were evaluated. Although post-load PG levels were not significantly different between the groups, 1-hr post-load PG, glycoalbumin, and HbA1c levels decreased at 8 weeks compared with the baseline levels only in the LcS group (p=0.036, p=0.002, and p=0.006, respectively). The reduction in glycoalbumin levels was statistically significantly greater in the LcS group than in the placebo group (p=0.030). Stratified analyses revealed significantly improved 1-hr post-load PG and glycoalbumin levels in the LcS group compared with the placebo group among subjects with severe glucose intolerance (2-hr post-load PG levels higher than the median at baseline; p=0.036 and p=0.034, respectively). In terms of lipidic outcomes, total, low-density lipoprotein, and non-high-density lipoprotein cholesterol levels were significantly lower in the LcS group than in the placebo group (p=0.023, p=0.022, and p=0.008, respectively). These findings suggest that LcS may favourably affect metabolic abnormalities in obese prediabetic subjects, though the effects on glycaemic control may be limited.
Gut microbiota affects the host's metabolism, and it is suggested that there are differences in gut microbiota composition between patients with type 2 diabetes and healthy individuals. Additionally, dysbiosis may increase the concentration of lipopolysaccharides (LPS), causing metabolic endotoxemia, which induces impaired glucose tolerance. Several studies have reported relationships between metabolic diseases and the gut microbiota; and prebiotics, such as oligosaccharides, are commonly consumed to regulate gut microbiotas in healthy individuals. Galacto-oligosaccharides (GOS) are a major prebiotic, which specifically increase Bifidobacteriaceae abundance. Recent studies have reported that Bifidobacteriaceae improved metabolic endotoxemia or impaired glucose tolerance. However, there are few studies reporting the effects of GOS on patients with type 2 diabetes. In the current study, we compared clinical parameters, faecal gut microbiota, their associated metabolic products and their components such as LPS, and LPS-binding protein (LBP) produced by the host, between patients with diabetes and healthy controls. We then assessed the effects of GOS on glycaemic control, and gut microbiotas and metabolites in patients with type 2 diabetes in a double-blind controlled manner. LBP levels were significantly higher in patients with diabetes than those of healthy subjects, which was consistent with previous reports. The abundance of Bifidobacteriaceae and the diversity of intestinal microbiota were significantly lower in patients with diabetes than in healthy subjects. Interestingly, Bifidobacteriaceae was markedly restored in patients with diabetes after consumption of GOS, whereas LBP and glucose tolerance did not improve during this short-term trial period. In the present study, we demonstrated that GOS can ameliorate dysbiosis in patients with diabetes, and continuous intake of GOS may be a promising method for managing type 2 diabetes.
The aim of this study was to investigate the effects of 24-week synbiotic supplementation on chronic inflammation and the gut microbiota in obese patients with type 2 diabetes. We randomized 88 obese patients with type 2 diabetes to one of two groups for 24 weeks: control or synbiotic (Lacticaseibacillus paracasei strain Shirota (previously Lactobacillus casei strain Shirota) and Bifidobacterium breve strain Yakult, and galactooligosaccharides). The primary endpoint was the change in interleukin-6 from baseline to 24 weeks. Secondary endpoints were evaluation of the gut microbiota in feces and blood, fecal organic acids, high-sensitivity C-reactive protein, lipopolysaccharide-binding protein, and glycemic control. Synbiotic administration for 24 weeks did not significantly affect changes in interleukin-6 from baseline to 24 weeks (0.35 ± 1.99 vs. −0.24 ± 1.75 pg/mL, respectively). Relative to baseline, however, at 24 weeks after synbiotic administration there were positive changes in the counts of Bifidobacterium and total lactobacilli, the relative abundances of Bifidobacterium species such as Bifidobacterium adolescentis and Bifidobacterium pseudocatenulatum, and the concentrations of acetic and butyric acids in feces. No significant changes in inflammatory markers were found in the synbiotic group compared to the control group. However, synbiotic administration at least partially improved the gut environment in obese patients with type 2 diabetes.
Marine invertebrates associate with diverse microorganisms. Microorganisms even inhabit coelomic fluid (CF), namely, the fluid filling the main body cavity of echinoderms. The CF microbiota potentially impacts host health and disease. Here, we analysed the CF microbiota in two common coastal starfish species, Patiria pectinifera and Asterias amurensis. Although microbial community structures were highly variable among individual starfish, those of P. pectinifera were compositionally similar to those in the surrounding seawater. By contrast, many A. amurensis individuals harboured unique microbes in the CF, which was dominated by the unclassified Thiotrichales or previously unknown Helicobacter-related taxon. In some individuals, the Helicobacter-related taxon was the most abundant genus-level taxon, accounting for up to 97.3% of reads obtained from the CF microbial community. Fluorescence in situ hybridization using a Helicobacter-related-taxon-specific probe suggested that probe-reactive cells in A. amurensis were spiral-shaped, morphologically similar to known Helicobacter species. Electron microscopy revealed that the spiral cells had a prosthecate-like polar appendage that has never been reported in Helicobacter species. Although culture of Helicobacter-related taxon was unsuccessful, this is the first report of the dominance of a Helicobacter-related taxon in invertebrates and non-digestive organs, reshaping our knowledge of the phylogeography of Helicobacter-related taxa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.