Complementary DNA encoding hen egg white lysozyme (HEWL) was subjected to site-directed mutagenesis to have the N-glycosylation signal sequence (Asn"-Ty? '-Th?) by substituting Arg with Thr at position 21. The mutant lysozyme (R2lT) was expressed in Succharomyces cerevisiae carrying the yeast expression plasmid inserting the mutant HEWL cDNA. The mutant lysozyme was expressed in the glycosylated forms which are mainly a polymannosyl form with a small amount of oligomannosyl form. The polymannosyl lysozyme was susceptible to Endo H cleavage of the carbohydrate chain. The length of the polymannose chain was predicted to be approximately 340 residues/mol of lysozyme from carbohydrate analysis. According to the estimation with low-angle laser light scattering combined with HPLC, the average molecular weight of polymannosyl lysozyme was 75 kDa, which is consistent with the value obtained from the carbohydrate analysis. The size of polymannosyl lysozyme R2lT is similar or somewhat larger than that of G49N reported previously. Thus, it was confirmed that the unusually large polymannose chain was attached to heterologous mutant lysozyme, regardless of the N-linked position, in yeast.
Bioactive oligomannosyl lysozyme with improved surface functionalities was successfully prepared by using an extracellular pH-sensitive glycosylation system for heterogeneous protein in yeast cell. A recombinant Saccharomyces cerevisiae carrying a mutant lysozyme gene encoding the signal sequence of an N-linked glycosylation site at position 49 was cultivated in various pH conditions to investigate the effects of extracellular pH on the glycosylation patterns and the expression of the protein. A large polymannose (Man(310)GlcNAc(2)) chain-linked lysozyme was predominantly expressed accompanied by small amounts of a core-type oligomannose chain (Man(14)GlcNAc(2))-linked lysozyme in the yeast medium where the extracellular pH was kept at 3.5 or above, while an oligomannose chain lysozyme was preferentially expressed in the yeast medium where the pH was less than 3. The lytic activities of the oligomannosyl and the polymannosyl lysozymes were found to be 70.4 and 5.1%, respectively, of the wild-type lysozyme when Micrococcus lysodeikticus cells were used as the substrate. The enzymatic activity of the oligomannosyl lysozyme was totally conserved for the glycolysis assay with a soluble substrate, glycol chitin, whereas that of the polymannosyl lysozyme was not. After heating the sample up to 95 degrees C at pH 7.0 where no visible protein coagulation was observed, thermostability of the enzymatic activity of the oligomannosyl lysozyme was drastically improved with more than 60% of residual lytic activity. Emulsifying properties of the protein also were highly improved by the oligomannosylation, in which the emulsifying activity was 3.2 times higher than that of the wild-type protein. Corresponding to the increase of the surface functionalities, the surface tension of the oligomannosyl protein exhibited a significantly (p < 0.05) lower value compared to that of the wild-type. By using the lower pH medium at 3.0, it was revealed that a substantial amount (0.31 mg/L) of the oligomannosyl lysozyme was successfully obtained in the culture medium. Therefore, the extracellular pH-sensitive glycosylation system can be used to obtain bioactive and surface functional neoglycoproteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.