Although the exact etiology of Alzheimer's disease (AD) is a topic of debate, the consensus is that the accumulation of -amyloid (A) peptides in the senile plaques is one of the hallmarks of the progression of the disease. The A peptide is formed by the amyloidogenic cleavage of the amyloid precursor protein (APP) by -and ␥-secretases. The endocytic system has been implicated in the cleavages leading to the formation of A. However, the identity of the intracellular compartment where the amyloidogenic secretases cleave and the mechanism by which the intracellularly generated A is released into the extracellular milieu are not clear. Here, we show that -cleavage occurs in early endosomes followed by routing of A to multivesicular bodies (MVBs) in HeLa and N2a cells. Subsequently, a minute fraction of A peptides can be secreted from the cells in association with exosomes, intraluminal vesicles of MVBs that are released into the extracellular space as a result of fusion of MVBs with the plasma membrane. Exosomal proteins were found to accumulate in the plaques of AD patient brains, suggesting a role in the pathogenesis of AD. multivesicular bodies ͉ rafts ͉ amyloid precursor protein ͉ -secretase ͉ endocytosis A lzheimer's disease (AD) is a late-onset neurological disorder with progressive loss of memory and cognitive abilities as a result of excessive neurodegeneration (1). AD is characterized by extracellular aggregates of -amyloid (A) peptides known as amyloid plaques (2). The A peptide is derived from the sequential processing of the amyloid precursor protein (APP) by -and ␥-secretases. -secretase [(-APP cleaving enzyme (BACE)] is a type-1 transmembrane aspartyl protease and is mainly localized to endosomes, lysosomes and the transGolgi network (3). ␥-Secretase is a multicomponent complex that is composed of presenilin-1͞presenilin-2, nicastrin, Aph-1, and PEN-2 (4) and is localized to the early secretory (5, 6) and the endocytic compartments (7,8). Nonamyloidogenic processing of APP involves ␣-secretase that cleaves APP inside the A region, giving rise to the ␣-cleaved ectodomain, thus precluding the formation of A (9). Hence, the availability of APP to either ␣-or -secretase determines whether A peptide will be generated. Lateral organization of membranes (10) and subcellular localization (11, 12) of the substrate and the secretases have been documented to regulate A generation. Recent work suggests that -secretase associates with lipid rafts, liquid-ordered domains in the membrane (13,14), and that integrity of raft domains is required for -cleavage of APP to occur (ref. 10; see, however, ref. 15). ␣-Cleavage, in contrast, occurs outside raft domains (10). The ␥-secretase complex is also raft-associated (16); hence, amyloidogenic processing of APP could occur in clustered raft domains to generate A (10). Inhibition of endocytosis reduces -cleavage but not ␣-cleavage, suggesting that -cleavage mainly occurs in endosomes (10,11,(17)(18)(19). Accumulation of A peptides in extracellular...
Partial resistance of cell membranes to solubilization with mild detergents and the analysis of isolated detergent-resistant membranes (DRMs) have been used operationally to define membrane domains. Given the multitude of detergents used for this purpose, we sought to investigate whether extraction with different detergents might reflect the same underlying principle of domain formation. We therefore compared the protein and lipid content of DRMs prepared with a variety of detergents from two cell lines. We found that the detergents differ considerably in their ability to selectively solubilize membrane proteins and to enrich sphingolipids and cholesterol over glycerophospholipids as well as saturated over unsaturated phosphatidylcholine. In addition, we observed cell type-dependent variations of the molecular characteristics of DRMs and the effectiveness of particular detergents. These results make it unlikely that different detergents reflect the same aspects of membrane organization and underscore both the structural complexity of cell membranes and the need for more sophisticated analytical tools to understand their architecture.
In mammals, two isoforms of the peroxisome targeting signal (PTS) type 1 receptor Pex5p, i.e. Pex5pS and Pex5pL with an internal 37-amino acid insertion, have previously been identified. Expression of either type of Pex5p complements the impaired PTS1 import in Chinese hamster ovary pex5 mutants, but only Pex5pL can rescue the PTS2 import defect noted in a subgroup of pex5 mutants such as ZP105. In this work, we found that Pex5pL directly interacts with the PTS2 receptor Pex7p, carrying its cargo PTS2 protein in the cytosol. Pex5pL, but not Pex5pS, mediated the binding of PTS2 protein to Pex14p by translocating Pex7p, demonstrating that Pex5pL plays a pivotal role in peroxisomal PTS2 import. Pex5p was localized mostly in the cytosol in wild-type CHO-K1 and Pex14p-deficient mutant cells, whereas it accumulated in the peroxisomal remnants in cell mutants defective in Pex13p or the RING family peroxins such as Pex2p and Pex12p. Furthermore, overexpression of Pex14p, but not Pex10p, Pex12p, or Pex13p, caused accumulation of Pex5p in peroxisomal membranes, with concomitant interference with PTS1 and PTS2 import. Therefore, Pex5p carrying the cargoes most likely docks with the initial site (Pex14p) in a putative import machinery, subsequently translocating to other components such as Pex13p, Pex2p, Pex10p, and Pex12p.
The flotillins/reggie proteins are associated with noncaveolar membrane microdomains and have been implicated in the regulation of a clathrin-and caveolin-independent endocytosis pathway. Endocytosis is required for the amyloidogenic processing of the amyloid precursor protein (APP) and thus to initiate the release of the neurotoxic -amyloid peptide (A), the major component of extracellular plaques found in the brains of Alzheimer's disease patients. Here, we report that small interference RNA-mediated downregulation of flotillin-2 impairs the endocytosis of APP, in both neuroblastoma cells and primary cultures of hippocampal neurons, and reduces the production of A. Similar to tetanus neurotoxin endocytosis, but unlike the internalization of transferrin, clathrin-dependent endocytosis of APP requires cholesterol and adaptor protein-2 but is independent of epsin1 function. Moreover, on a nanoscale resolution using stimulated emission depletion microscopy and by Förster resonance energy transfer with fluorescence lifetime imaging microscopy, we provide evidence that flotillin-2 promotes the clustering of APP at the cell surface. We show that the interaction of flotillin-2 with APP is dependent on cholesterol and that clustering of APP enhances its endocytosis rate. Together, our data suggest that cholesterol/flotillindependent clustering of APP may stimulate the internalization into a specialized clathrin-dependent endocytosis pathway to promote amyloidogenic processing.
Peroxisome-biogenesis disorders (PBDs), including Zellweger syndrome (ZS), are autosomal recessive diseases caused by a deficiency in peroxisome assembly as well as by a malfunction of peroxisomes, among which>10 genotypes have been identified. We have isolated a human PEX16 cDNA (HsPEX16) by performing an expressed-sequence-tag homology search on a human DNA database, by using yeast PEX16 from Yarrowia lipolytica and then screening the human liver cDNA library. This cDNA encodes a peroxisomal protein (a peroxin Pex16p) made up of 336 amino acids. Among 13 peroxisome-deficiency complementation groups (CGs), HsPEX16 expression morphologically and biochemically restored peroxisome biogenesis only in fibroblasts from a CG-D patient with ZS in Japan (the same group as CG-IX in the United States). Pex16p was localized to peroxisomes through expression study of epitope-tagged Pex16p. One patient (PBDD-01) possessed a homozygous, inactivating nonsense mutation, C-->T at position 526 in a codon (CGA) for 176Arg, that resulted in a termination codon (TGA). This implies that the C-terminal half is required for the biological function of Pex16p. PBDD-01-derived PEX16 cDNA was defective in peroxisome-restoring activity when expressed in the patient's fibroblasts. These results demonstrate that mutation in PEX16 is the genetic cause of CG-D PBDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.