Obesity is a principal causative factor in the development of metabolic syndrome. Here we report that increased oxidative stress in accumulated fat is an important pathogenic mechanism of obesity-associated metabolic syndrome. Fat accumulation correlated with systemic oxidative stress in humans and mice. Production of ROS increased selectively in adipose tissue of obese mice, accompanied by augmented expression of NADPH oxidase and decreased expression of antioxidative enzymes. In cultured adipocytes, elevated levels of fatty acids increased oxidative stress via NADPH oxidase activation, and oxidative stress caused dysregulated production of adipocytokines (fat-derived hormones), including adiponectin, plasminogen activator inhibitor-1, IL-6, and monocyte chemotactic protein-1. Finally, in obese mice, treatment with NADPH oxidase inhibitor reduced ROS production in adipose tissue, attenuated the dysregulation of adipocytokines, and improved diabetes, hyperlipidemia, and hepatic steatosis. Collectively, our results suggest that increased oxidative stress in accumulated fat is an early instigator of metabolic syndrome and that the redox state in adipose tissue is a potentially useful therapeutic target for obesity-associated metabolic syndrome.
Obesity is a principal causative factor in the development of metabolic syndrome. Here we report that increased oxidative stress in accumulated fat is an important pathogenic mechanism of obesity-associated metabolic syndrome. Fat accumulation correlated with systemic oxidative stress in humans and mice. Production of ROS increased selectively in adipose tissue of obese mice, accompanied by augmented expression of NADPH oxidase and decreased expression of antioxidative enzymes. In cultured adipocytes, elevated levels of fatty acids increased oxidative stress via NADPH oxidase activation, and oxidative stress caused dysregulated production of adipocytokines (fat-derived hormones), including adiponectin, plasminogen activator inhibitor-1, IL-6, and monocyte chemotactic protein-1. Finally, in obese mice, treatment with NADPH oxidase inhibitor reduced ROS production in adipose tissue, attenuated the dysregulation of adipocytokines, and improved diabetes, hyperlipidemia, and hepatic steatosis. Collectively, our results suggest that increased oxidative stress in accumulated fat is an early instigator of metabolic syndrome and that the redox state in adipose tissue is a potentially useful therapeutic target for obesity-associated metabolic syndrome.
Adiponectin is a fat-derived hormone with antidiabetic and antiatherogenic properties. Hypoadiponectinemia seen in obesity is associated with insulin-resistant diabetes and atherosclerosis. Thiazolidinediones, peroxisome proliferator-activated receptor-␥ (PPAR-␥) agonists, have been shown to increase plasma adiponectin levels by the transcriptional induction in adipose tissues. However, the precise mechanism of such action is unknown. In this study, we have identified a functional PPAR-responsive element (PPRE) in human adiponectin promoter. PPAR-␥/retinoid X receptor (RXR) heterodimer directly bound to the PPRE and increased the promoter activity in cells. In adipocytes, point mutation of the PPRE markedly reduced the basal transcriptional activity and completely blocked thiazolidinedione-induced transactivation of adiponectin promoter. We have also identified a responsive element of another orphan nuclear receptor, liver receptor homolog-1 (LRH-1), in adiponectin promoter. LRH-1 was expressed in 3T3-L1 cells and rat adipocytes. LRH-1 bound specifically to the identified responsive element (LRH-RE). LRH-1 augmented PPAR-␥-induced transactivation of adiponectin promoter, and point mutation of the LRH-RE significantly decreased the basal and thiazolidinedione-induced activities of adiponectin promoter. Our results indicate that PPAR-␥ and LRH-1 play significant roles in the transcriptional activation of adiponectin gene via the PPRE and the LRH-RE in its promoter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.