We have developed a large-scale integrated (LSI) complementary metal-oxide semiconductor (CMOS)-based amperometric sensor array system called "Bio-LSI" as a platform for electrochemical bio-imaging and multi-point biosensing with 400 measurement points. In this study, we newly developed a Bio-LSI chip with a light-shield structure and a mode-selectable function with the aim of extending the application range of Bio-LSI. The light shield created by the top metal layer of the LSI chip significantly reduces the noise generated by the photocurrent, whose value is less than 1% of the previous Bio-LSI without the light shield. The mode-selectable function enables the individual operation of 400 electrodes in off, electrometer, V1, and V2 mode. The off-mode cuts the electrode from the electric circuit. The electrometer-mode reads out the electrode potential. The V1-mode and the V2-mode set the selected sensor electrode at two different independent voltages and read out the current. We demonstrated the usefulness of the mode-selectable function. First, we displayed a dot picture based on the redox reactions of 2.0 mM ferrocenemethanol at 400 electrodes by applying two different independent voltages using the V1 and V2 modes. Second, we carried out a simultaneous detection of O2 and H2O2 using the V1 and V2 modes. Third, we used the off and V1 modes for the modification of the osmium-polyvinylpyridine gel polymer containing horseradish peroxidase (Os-HRP) at the selected electrodes, which act as sensors for H2O2. These results confirm that the advanced version of Bio-LSI is a promising tool that can be applied to a wide range of analytical fields.
Covering a whole surface of a robot with tiny sensors which can measure local pressure and transmit the data through a network is an ideal solution to give an artificial skin to robots to improve a capability of action and safety. The crucial technological barrier is to package force sensor and communication function in a small volume. In this paper, we propose the novel device structure based on a wafer bonding technology to integrate and package capacitive force sensor using silicon diaphragm and an integrated circuit separately manufactured. Unique fabrication processes are developed, such as the feed-through forming using a dicing process, a planarization of the Benzocyclobutene (BCB) polymer filled in the feed-through and a wafer bonding to stack silicon diaphragm onto ASIC (application specific integrated circuit) wafer. The ASIC used in this paper has a capacitance measurement circuit and a digital communication interface mimicking a tactile receptor of a human. We successfully integrated the force sensor and the ASIC into a 2.5×2.5×0.3 mm die and confirmed autonomously transmitted packets which contain digital sensing data with the linear force sensitivity of 57,640 Hz/N and 10 mN of data fluctuation. A small stray capacitance of 1.33 pF is achieved by use of 10 μm thick BCB isolation layer and this minimum package structure.
This paper reports a 3-axis fully integrated differential capacitive tactile sensor surface-mountable on a bus line. The sensor integrates a flip-bonded complementary metal-oxide semiconductor (CMOS) with capacitive sensing circuits on a low temperature cofired ceramic (LTCC) interposer with Au through vias by Au-Au thermo-compression bonding. The CMOS circuit and bonding pads on the sensor backside were electrically connected through Au bumps and the LTCC interposer, and the differential capacitive gap was formed by an Au sealing frame. A diaphragm for sensing 3-axis force was formed in the CMOS substrate. The dimensions of the completed sensor are 2.5 mm in width, 2.5 mm in length, and 0.66 mm in thickness. The fabricated sensor output coded 3-axis capacitive sensing data according to applied 3-axis force by three-dimensional (3D)-printed pins. The measured sensitivity was as high as over 34 Count/mN for normal force and 14 to 15 Count/mN for shear force with small noise, which corresponds to less than 1 mN. The hysteresis and the average cross-sensitivity were also found to be less than 2% full scale and 11%, respectively.
Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.