This work describes a system aimed at the near realtimemonitoring of precipitable water vapor (PWV) by means of a dense network of Global Navigation Satellite System (GNSS) receivers. These receivers are deployed with a horizontal spacing of 1-2 km around the Uji campus of Kyoto University, Japan. The PWV observed using a standard GPS meteorology technique, i.e., by using all satellites above a low elevation cutoff, is validated against radiosonde and radiometer measurements. The result is a RMS difference of about 2 mm. A more rigorous validation is done by selecting single GPS slant delays as they pass close to the radiosonde or the radiometer measuring directions, and higher accuracy is obtained. This method also makes it possible to preserve short-term fluctuations that are lost in the standard technique due to the averaging of several slant delays. Geostatistical analysis of the PWV observations shows that they are spatially correlated within the area of interest; this confirms that such a dense network can detect inhomogeneous distributions in water vapor. The PWV horizontal resolution is improved by using high-elevation satellites only, with the aim of exploiting at best the future Quasi-Zenith Satellite System (QZSS), which will continuously provide at least one satellite close to the zenith over Japan.
We studied the assimilation of high-resolution precipitable water vapor (PWV) data derived from a hyper-dense global navigation satellite system network around Uji city, Kyoto, Japan, which had a mean inter-station distance of about 1.7 km. We focused on a heavy rainfall event that occurred on August 13-14, 2012, around Uji city. We employed a local ensemble transform Kalman filter as the data assimilation method. The inhomogeneity of the observed PWV increased on a scale of less than 10 km in advance of the actual rainfall detected by the rain gauge. Zenith wet delay data observed by the Uji network showed that the characteristic length scale of water vapor distribution during the rainfall ranged from 1.9 to 3.5 km. It is suggested that the assimilation of PWV data with high horizontal resolution (a few km) improves the forecast accuracy. We conducted the assimilation experiment of high-resolution PWV data, using both small horizontal localization radii and a conventional horizontal localization radius. We repeated the sensitivity experiment, changing the mean horizontal spacing of the PWV data from 1.7 to 8.0 km. When the horizontal spacing of assimilated PWV data was decreased from 8.0 to 3.5 km, the accuracy of the simulated hourly rainfall amount worsened in the experiment that used the conventional localization radius for the assimilation of PWV. In contrast, the accuracy of hourly rainfall amounts improved when we applied small horizontal localization radii. In the experiment that used the small horizontal localization radii, the accuracy of the hourly rainfall amount was most improved when the horizontal resolution of the assimilated PWV data was 3.5 km. The optimum spatial resolution of PWV data was related to the characteristic length scale of water vapor variability.
Mechanisms related to the diurnal cycle of tropical deep convection over a complex terrain were investigated in the Bandung basin, West Java, Indonesia. Observational data were analyzed from X-band radar, Global Navigation Satellite System (GNSS) receivers, and radiosondes, in conjunction with high-resolution numerical model data.Significant diurnal variation of GNSS-derived precipitable water vapor (PWV), which peaked in the early evening, was observed from 13 to 19 March 2013. During this period, the X-band radar detected convective initiation at approximately 1200 local time over the southern slope of the basin. A 2-km-mesh model successfully simulated the observed diurnal variations of PWV and rainfall from 15 to 17 March 2013. In the model, moist air was present at the bottom of the basin early in the morning, which was transported to the southern slope of the basin by valley wind circulation after sunrise. In contrast, humidity was lower in the northern part of the basin due to a downward circulating valley wind. The valley wind decreased static stability around the southern slope of the basin by transporting moisture. It also caused a low-level wind convergence, resulting in convective initiation on the southern slope of the basin. The GNSS receiver network also recorded this simulated water vapor variability associated with the valley wind.These results suggest that water vapor in the bottom of the basin during mornings and its advection by the valley wind strongly influences convective initiation in Bandung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.