Responses were evoked from ganglion cells in catfish and frog retinas by a Gaussian modulation of the mean luminance. An algorithm was devised to decompose intraceUularly recorded responses into the slow and spike components and to extract the time of occurrence of a spike discharge. The dynamics of both signals were analyzed in terms of a series of first-through third-order kernels obtained by cross-correlating the slow (analog) or spike (discrete or point process) signals against the white-noise input. We found that, in the catfish, (a) the slow signals were composed mostly of postsynaptic potentials, (b) their linear components reflected the dynamics found in bipolar cells or in the linear response component of type-N (sustained) amacrine cells, and (c) their nonlinear components were similar to those found in either type-N or type-C (transient) amacrine cells. A comparison of the dynamics of slow and spike signals showed that the characteristic linear and nonlinear dynamics of slow signals were encoded into a spike train, which could be recovered through the cross-correlation between the white-noise input and the spike (point process) signals. In addition, well-defined spike correlates could predict the observed slow potentials. In the spike discharges from frog ganglion cells, the linear (or first-order) kernels were all inhibitory, whereas the second-order kernels had characteristics of on-off transient excitation. The transient and sustained amacrine cells similar to those found in catfish retina were the sources of the nonlinear excitation. We conclude that bipolar cells and possibly the linear part of the type-N cell response are the source of linear, either excitatory or inhibitory, components of the ganglion cell responses, whereas amacrine cells are the source of the cells' static nonlinearity.
Extrinsic current, either pulsatile or white-noise modulated, was injected into the (cone) horizontal-cell soma and axon, and resulting responses were recorded from nearby points. In the case of white-noise inputs, signal transmission between the two points was characterized by Wiener kernels. The signal transmission within the lamina, the S-space, formed by the (cone) horizontal-cell somas and axons is quasi-linear and very fast, indicating that the laminae are purely resistive networks within the frequency range of the light-evoked response. There exists signal transaction between the lamina formed by the somas and axons. The forward transmission is constant gain, low pass, but there is a filter for the reverse transmission to impede the backflow of high-frequency components. Signals in the horizontal-cell soma are transmitted to the bipolar cells. The transmission is sign noninverting for the on-center bipolar cells and sign inverting for the offcenter cells. The transmission is quasi-linear excluding complex mechanisms in the transmission. We believe that the forward and direct transmission of signals from the horizontal to bipolar cells is the most straightforward interpretation of the observation. The transfer functions between the horizontal and bipolar cells differ considerably from one bipolar cell to the next.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.