Osteocyte-like cells were prepared by sequentially treating calvaria from newborn rats with collagenase and chelating agents. On a reconstituted gel of basement membrane components, cells from the third collagenase digest displayed a round shape and expressed the highest level of alkaline phosphatase with minimal osteocalcin deposition into the matrix. On the other hand, cells derived from the interior after EDTA treatment exhibited well-developed dendritic cell processes and expressed essentially no alkaline phosphatase. The latter population also showed quite distinct characteristics such as higher extracellular activities of casein kinase II and ecto-5'-nucleotidase and the extracellular accumulation of a large amount of osteocalcin associated with mineral. These diverse phenotypic and protein expressions as well as the sites from which each population of cells were recovered strongly suggest that we have isolated osteoblastic and osteocytic cells. Bone sialoprotein II was extracellularly phosphorylated by casein kinase II in osteocytic cells but not in osteoblastic cells. We discuss the possibility that differentiation of young osteocytes from osteoblasts may facilitate the biochemical sequence of mineral deposition in the bone matrix.
Odontoblasts that we prepared from bovine incisors produced a dentin-specific protein, phosphophoryn, and accumulated it in mineralized nodules. The time course of mineralization was detected by measuring osteocalcin and mineral in the nodules. The sequence of developmental expression of proteins in this mineralizing dentin cell culture is very similar to that in bone cells, suggesting a common mechanism for matrix mineralization in bone and dentin. Casein kinase II, which phosphorylates bone phosphoproteins and dentin phosphorylates bone phosphoproteins and dentin phosphophoryn, also emerges coinciding with the initiation of mineralization. Furthermore, we have detected extracellular phosphorylation by casein kinase II of a dentin protein of M(r) 60,000, which we recovered from the phosphophoryn fraction in CaCl2 precipitate.
In the serum-free culture medium of bovine odontoblasts we detected active gelatinolytic metalloproteinases, matrix metalloproteinase (MMP)-2 and MMP-9 (gelatinases A and B). The activity of MMP-2, in particular, appeared suddenly around day 21 in the culture, coinciding with the development of odontoblastic cell processes and the loss of alkaline phosphatase. Reverse transcriptase-polymerase chain reaction analysis of these odontoblasts demonstrated that messages of MMP-2 but not MMP-9 increased significantly between day 15 and day 21. The in vitro observation indicates that medium conditioned by these odontoblasts and containing significant amounts of MMP-2 degrades not only the collagenous substrates but also purified dentin phosphophoryn as well. We have also observed that dephosphorylated dentin phosphoprotein becomes a better substrate for casein kinase II after limited proteolysis with MMP-2. These results support our working hypothesis that MMP-2-mediated proteolytic processing is an important step in accelerating the process of dentin matrix maturation, which includes phosphorylation and subsequent mineralization. As has been suggested previously, extracellular phosphorylation of matrix proteins is an important step in biomineralization both in bone and in dentin (Mikuni-Takagaki et al., J Bone Miner Res 1995;10:231-42; Zhu et al., Biochem J 1997; 323:637-43). Our present histochemical analysis in MMP-2 knockout mice confirms the concept with the delayed formation of mineralized tissues, dentin, and bone.
There are two steps in the process of matrix-mediated bone and dentin mineralization. First, as in other soft tissues, osteoblasts/odontoblasts synthesize collagenous matrices and second, mineral deposits in these matrices at a location distant from the cells that synthesized the matrices. We suggest a sequence of events that lead the matrix to mineralization: the phosphoproteins of bone and dentin are posttranslationally processed by limited proteolysis, then they are extracellularly processed into a more phosphorylated species that, we believe, facilitates mineralization. Our in situ phosphorylation experiments done with [gamma-32P] GTP suggest the existence of extracellular phosphorylation by a casein kinase II (CKII)-like enzyme, the enzyme known to phosphorylate most of the phosphate residues in dentin phosphophoryn and bone sialoproteins (osteopontin and BSP II).
Abstract:The electrophoretic behavior of the proteases (collagenase , plasmin, and elastase) were analyzed on the enzyme substrate copolymerized SDS-polyacrylamide gel electrophoresis (SDS-PAGE) , namely enzymography or zymography.The proteases showed individual affinities to gelatin substrate copolymerized on polyacrylamide gel. Therefore electrophoretic movement and the calculated molecular weight were dependent on the substrate concentrations. Molecular weights estimated from a degree of retardation by enzyme substrate was postulated in the following equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.