The convolutional neural network (CNN), which is one of the deep learning models, has seen much success in a variety of computer vision tasks. However, designing CNN architectures still requires expert knowledge and a lot of trial and error. In this paper, we attempt to automatically construct CNN architectures for an image classification task based on Cartesian genetic programming (CGP). In our method, we adopt highly functional modules, such as convolutional blocks and tensor concatenation, as the node functions in CGP. The CNN structure and connectivity represented by the CGP encoding method are optimized to maximize the validation accuracy. To evaluate the proposed method, we constructed a CNN architecture for the image classification task with the CIFAR-10 dataset. The experimental result shows that the proposed method can be used to automatically find the competitive CNN architecture compared with state-of-the-art models.
We propose a method for designing convolutional neural network (CNN) architectures based on Cartesian genetic programming (CGP). In the proposed method, the architectures of CNNs are represented by directed acyclic graphs, in which each node represents highly-functional modules such as convolutional blocks and tensor operations, and each edge represents the connectivity of layers. The architecture is optimized to maximize the classification accuracy for a validation dataset by an evolutionary algorithm. We show that the proposed method can find competitive CNN architectures compared with state-of-the-art methods on the image classification task using CIFAR-10 and CIFAR-100 datasets.
In this paper, we study design of deep neural networks for tasks of image restoration. We propose a novel style of residual connections dubbed "dual residual connection", which exploits the potential of paired operations, e.g., upand down-sampling or convolution with large-and smallsize kernels. We design a modular block implementing this connection style; it is equipped with two containers to which arbitrary paired operations are inserted. Adopting the "unraveled" view of the residual networks proposed by Veit et al., we point out that a stack of the proposed modular blocks allows the first operation in a block interact with the second operation in any subsequent blocks. Specifying the two operations in each of the stacked blocks, we build a complete network for each individual task of image restoration. We experimentally evaluate the proposed approach on five image restoration tasks using nine datasets. The results show that the proposed networks with properly chosen paired operations outperform previous methods on almost all of the tasks and datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.