At the beginning of 21(st) century, fifty years after discovery of deoxyribonucleic acid (DNA) double helix structure, scientific world is faced with a great progress in many disciplines of biological research, especially in the field of molecular biology and operating on nucleid acid molecules. Many molecular biology techniques have been implemented successfully in biology, biotechnology, medical science, diagnostics, and many more. The introduction of polymerase chain reaction (PCR) resulted in improving old and designing new laboratory devices for PCR amplification and analysis of amplified DNA fragments. In parallel to these efforts, the nature of DNA molecules and their construction have attracted many researchers. In addition, some studies concerning mimicking living systems, as well as developing and constructing artificial nanodevices, such as biomolecular sensors and artificial cells, have been conducted. This review is focused on the potential of nanotechnology in health care and medicine, including the development of nanoparticles for diagnostic and screening purposes, the manufacture of unique drug delivery systems, antisense and gene therapy applications and the enablement of tissue engineering, including the future of nanorobot construction.
Abstract:In this study we propose a new system to detect the object from an input image. The proposed system first uses the separability filter proposed by Fukui and Yamaguchi (Trans. IEICE Japan J80-D-II. 8, [2170][2171][2172][2173][2174][2175][2176][2177] 1997) to obtain the best object candidates and next, the system uses the Circular Hough Transform (CHT) to detect the presence of circular shape. The main contribution of this work consists of using together two different techniques in order to take advantages from the peculiarity of each of them. As the results of the experiments, the object detection rate of the proposed system was 96% for 25 images by moving the circle template every 20 pixels to right and down.
The purpose of this article was to introduce and to give an overview of the Pneumatic Artificial Muscles (PAMs) as a whole and to discuss its numerical modelling, using the Finite Element (FE) Method. Thus, more information to understand on its behaviour in generating force for actuation was obtained. The construction of PAMs was mainly consists of flexible, inflatable membranes which having orthotropic material behaviour. The main properties influencing the PAMs will be explained in terms of their load-carrying capacity and low weight in assembly. Discussion on their designs and capacity to function as locomotion device in robotics applications will be laid out, followed by FE modelling to represent PAMs overall structural behaviour under any potential operational conditions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.