Acylpyridinium ions have been known as catalytically active species in acylation reactions catalyzed by 4-dimethylaminopyridine and its analogues. Acylpyridinium carboxylates were found to be 800-1300 times more reactive than the corresponding acylpyridinium chlorides. A catalytic cycle was developed, in which acylpyridinium carboxylates were generated by in situ counteranion exchange from the acylpyridinium chlorides. A catalyst loading as low as 0.01 mol % and catalyst turnover number of up to 6700 were achieved for site-selective acylation of a carbohydrate.
Organocatalytic site-selective diversification of 10-deacetylbaccatin III, a key natural product for the semisynthesis of taxol, has been achieved. Various acyl groups were selectively introduced into the C(10)-OH of 10-deacetylbaccatin III. The C(10)-OH selective acylation was also applied to acylative site-selective dimerization of 10-deacetylbaccatin III to provide the structurally defined dimer.
A two-step procedure
was developed for the synthesis of 4-deoxy pyranosides from the parent
pyranosides with four hydroxy groups via organocatalytic site-selective
acylation and reductive deacyloxylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.