Abstract. We found that striptease-positive mast cells were abundant in the invasive front of human colon adenocarcinoma by examining 30 cases. Because tryptase has been suggested to be the agonist proteinase for protease-activated receptor-2 (PAR-2), we investigated the effects of stimulation of PAR-2 by tryptase on the cell signaling and proliferation of DLD-1, a human colon carcinoma cell line. PAR-2 stimulation by tryptase induced the increase in [Ca 2+ ] i , which was desensitized by the prior application of PAR-2 activating peptide (AP). The proliferative responses of DLD-1 to tryptase and PAR-2 AP were associated with the phosphorylation of MEK and MAP kinase. Inhibition of MEK by PD98059 completely inhibited the proliferationenhancing effects of tryptase and PAR-2 AP as well as phosphorylation of MAP kinase. Moreover, tryptase and PAR-2 AP stimulated the production of prostaglandin E 2 and the inhibition of prostaglandin synthesis by indomethacin or NS398 resulted in the complete inhibition of the proliferative responses to tryptase and PAR-2 AP. Furthermore, the tryptase-stimulated proliferation of DLD-1 was concentration-dependently inhibited by nafamostat mesilate, a specific inhibitor of tryptase. These results as a whole indicated that tryptase has proliferative effects on DLD-1 through cyclooxygenase-and MAP kinase-dependent manners acting on PAR-2 by its proteolytic activity.
Protease-activated receptor-2 (PAR-2) has been demonstrated to be highly expressed in the gastrointestinal tract. In the present study, we investigated the effects of PAR-2 stimulation on the cell signaling and proliferation of DLD-1, a human colon carcinoma cell line, in comparison with the PAR-1 stimulation. PAR-2 stimulation by agonist peptide SLIGKV concentration-dependently induced the increase in [Ca2+]i and the proliferation of DLD-1 whereas the inverse peptide LSIGKV did not. Trypin (10(-9) M), an agonist protease for PAR-2, also enhanced the proliferation of DLD-1. The proliferative response of DLD-1 to PAR-2 stimulation was associated with the transient phosphorylation of MEK and MAP kinase, but not p38 MAP kinase and JNK. Inhibition of MEK by PD98059 (50 microM) completely inhibited the proliferation-stimulating effects as well as the phosphorylation of MAP kinase induced by PAR-2 agonist peptide (100 microM) and trypsin (10(-9) M). The prolonged treatment with PAR-2 agonist peptide for more than one hour was required for the enhanced proliferative response, suggesting the existence of unknown long-lasting cooperative signaling with MAP kinase cascade. PAR-1 stimulation by the agonist peptide SFLLRN (100 microM) or thrombin (10(-8) M) produced Ca2+ signaling, however, the stimulation neither produced the cell proliferative response nor the activation of MEK-MAP kinase cascade. These results indicated that Ca2+ signaling induced by PARs activation was not enough for inducing the cell proliferation in DLD-1 cells and that stimulation of PAR-2 can induce the activation of MEK-MAP kinase cascade, leading to the growth promoting response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.